# ПРОНИЦАЕМЫЕ МАТЕРИАЛЫ ИЗ МЕДНЫХ КАБЕЛЬНЫХ ОТХОДОВ. СООБЩЕНИЕ 6. ПРОГНОЗИРОВАНИЕ СВОЙСТВ МНОГОСЛОЙНЫХ ТРУБЧАТЫХ ЭЛЕМЕНТОВ НА ОСНОВЕ МЕДНЫХ КАБЕЛЬНЫХ ОТХОДОВ, ПОЛУЧЕННЫХ МЕТОДОМ СУХОГО ИЗОСТАТИЧЕСКОГО ПРЕССОВАНИЯ

## В. М. Капцевич, В. К. Корнеева

Белорусский государственный аграрный технический университет, пр. Независимости, 99, 220023, г. Минск, Беларусь, e-mail: lerakor1974@mail.ru

Поступила 06.09.2017 г.

На основании ранее проведенных экспериментальных исследований предложена методика, позволяющая спрогнозировать геометрические параметры (толщины слоев) и гидродинамические свойства многослойных фильтрующих волокновых материалов и оценивать параметры их эффективности.

Введение. Разработка новых фильтровальных систем требует создания фильтрующих материалов, обеспечивающих высокую производительность процесса фильтрования, требуемую тонкость очистки и длительный срок службы. К материалам, с помощью которых возможно решение этих вопросов, относятся многослойные материалы, в которых каждый слой выполнен из структурных элементов различного гранулометрического состава. В работе [1] впервые в практике порошковой металлургии исследованы свойства медных кабельных отходов (МКО) различного гранулометрического состава и предложено их использование для изготовления фильтрующих волокновых материалов (ФВМ). В работе [2] исследованы закономерности и отличительные особенности уплотнения МКО методом сухого изостатического прессования (СИП), а в работе [3] установлена взаимосвязь между структурными и гидродинамическими свойствами ФВМ из МКО. В работе [4] изучены закономерности укладки волокон в узкие кольцевые зазоры, а в работе [5] предложен усовершенствованный метод СИП, позволяющий управлять толщинами слоев многослойных ФВМ из МКО.

Цель работы – разработка методики прогнозирования свойств и оценки эффективности многослойных ФВМ, используя ранее полученные экспериментальные данные по закономерности уплотнения и взаимосвязи между структурными и гидродинамическими свойствами ФВМ, полученных методом СИП из МКО.

Основная часть. Процесс получения многослойных ФВМ методом СИП основан на засыпке волокон заданного гранулометрического состава в кольцевой зазор между формообразующим металлическим стержнем диаметром  $D_0$ и эластичной матрицей с внутренним диаметром  $D_{\rm \scriptscriptstyle M}$ , прессовании под давлением, обеспечивающим получение прессовки требуемой плотности  $\rho_{n1}$  (пористости 1 –  $\rho_{n1}$ ) диаметром  $D_1$ , повторной засыпки волокон другого гранулометрического состава в кольцевой зазор между прессовкой диаметром  $D_1$  и матрицей с внутренним диаметром  $D_{\rm M}$  и повторного прессования с получением двухслойной прессовки с плотностью второго слоя  $\rho_{n2}$  (пористостью 1 –  $\rho_{\pi 2}$ ) (рис. 1). Процесс дальнейшей засыпки волокон требуемого гранулометрического состава и последующего прессования может осуществляться многократно. При этом при каждой последующей засыпке и прессовании диаметр прессовки возрастает от  $D_1$  до D<sub>2</sub>, ..., D<sub>n-1</sub>, D<sub>n</sub>, изменяется также плотность каждого напрессованного слоя от р<sub>п1</sub> до р<sub>п2</sub>, ...,  $\rho_{\pi(n-1)}$ ,  $\rho_{\pi n}$ .

В процессе засыпки каждого слоя следует учитывать плотность укладки в кольцевой зазор, которая, как было установлено экспериментально [4], зависит как от размера зазора, так и от гранулометрического состава волокон.

Плотность напрессованного слоя может быть определена из полученных ранее уравнений прессования [2].



Рис. 1. Схема многослойного ФВМ

Пусть при прессовании первого слоя плотность засыпки составляла  $\rho_{\rm H1}$ , второго –  $\rho_{\rm H2}$ , ..., (n-1)-го –  $\rho_{\rm H(n-1)}$ , n-го –  $\rho_{\rm Hn}$ . Очевидно, что масса засыпанных волокон в кольцевой зазор равна массе прессовки. Тогда после прессования первого, второго, ..., (n-1)-го, n-го слоев равенство масс можно записать, соответственно:

$$\begin{aligned} \rho_{\rm H1} V_{\rm H1} &= \rho_{\rm \Pi1} V_{\rm \Pi1}, \\ \rho_{\rm H2} V_{\rm H2} &= \rho_{\rm \Pi2} V_{\rm \Pi2}, \\ \dots \\ \rho_{\rm H(n-1)} V_{\rm H(n-1)} &= \rho_{\rm \Pi(n-1)} V_{\rm \Pi(n-1)}, \\ \rho_{\rm H7} V_{\rm H7} &= \rho_{\rm \Pi7} V_{\rm \Pi7}, \end{aligned}$$

где  $V_{\rm H1}$ ,  $V_{\rm H2}$ , ...,  $V_{\rm H(n-1)}$ ,  $V_{\rm Hn}$  – объемы кольцевых зазоров первого, второго, ..., (n-1)-го, *n*-го слоев, соответственно;  $V_{\rm n1}$ ,  $V_{\rm n2}$ , ...,  $V_{\rm n(n-1)}$ ,  $V_{\rm nn}$  – объемы прессовок при прессовании первого, второго, ..., (n-1)-го, *n*-го слоев, соответственно.

Из равенства масс засыпки волокон и масс прессовки каждого слоя, рассчитав объемы кольцевых зазоров и объемы прессовок, можно определить наружные диаметры однослойных и многослойных ФВМ:

для однослойного ФВМ

$$D_1 = \sqrt{D_0^2 + \frac{\rho_{\rm H1}}{\rho_{\rm II}} (D_{\rm M}^2 - D_0^2)} ,$$

для двухслойного

$$D_2 = \sqrt{D_1^2 + \frac{\rho_{\rm H2}}{\rho_{\rm H2}} \left( D_{\rm M}^2 - D_1^2 \right)} ,$$

для (n-1)-слойного

$$D_{(n-1)} = \sqrt{D_{(n-1)-1}^2 + \frac{\rho_{\mathrm{H}(n-1)}}{\rho_{\mathrm{I}(n-1)}}} \left( D_{\mathrm{M}}^2 - D_{(n-1)-1}^2 \right),$$

для *п*-слойного

$$D_n = \sqrt{D_{(n-1)}^2 + \frac{\rho_{\text{H}n}}{\rho_{\text{II}n}}} \left( D_{\text{M}}^2 - D_{(n-1)}^2 \right)$$

Полученные выражения позволяют рассчитать наружные диаметры каждого напрессованного слоя.

Зная наружные диаметры  $D_1, D_2, ..., D_{n-1}, D_n$ и экспериментально определенные коэффициенты проницаемости каждого слоя  $k_1, k_2, ..., k_{n-1}, k_n$  можно рассчитать коэффициент проницаемости многослойного ФВМ [6]:

$$k_{3\Phi} = \frac{\ln \frac{D_0}{D_n}}{\left(\frac{\ln \frac{D_0}{D_1}}{k_1} + \frac{\ln \frac{D_1}{D_2}}{k_2} + \dots + \frac{\ln \frac{D_{(n-1)}}{D_n}}{k_n}\right)} = \frac{\ln \frac{D_0}{D_n}}{\sum_{i=1}^n \frac{\ln \frac{D_{(n-1)}}{D_n}}{k_n}}$$

Результаты расчетов. Используем предложенный метод для расчета свойств многослойных ФВМ, полученных методом СИП при давлениях прессования Р, равных 80, 100, 120 и 140 МПа, МКО-фракции (-0,2...+0,1), (-0,315... +0,2), (-0,4...+0,315) и (-0,63...+0,4) мм. Для всех рассматриваемых многослойных ФВМ несущий (внутренний) слой выполнен из МКО-фракции (-0,63...+0,4) мм, фильтрующий (наружный) из МКО-фракции (-0,2...+0,1) мм, а промежуточные слои – из фракций (-0,315...+0,2) и (-0,4... +0,315) мм. Для всех многослойных ФВМ размеры пор  $d_{\text{п ср}}$  определялись размерами пор фильтрующего слоя. При проведении расчетов предполагали, что технологическая оснастка для прессования состоит из металлического формообразующего стержня диаметром  $D_0 = 30$  мм и эластичной матрицы внутренним диаметром  $D_{\rm M} = 50$  мм. Для проведения расчетов использовались ранее полученные экспериментальные двухслойного ФВМ из МКО-фракций (-0,63...

ρ<sub>п</sub> [3] и коэффициент проницаемости k [3].

тов многослойных ФВМ:

+0,4) и (-0,2...+0,1) мм (табл. 1);

четырехслойного ФВМ из МКО-фракций (-0,63...+0,4), (-0,4...+0,315), (-0,315...+0,2) и (-0,2... +0,1) мм (табл. 4).

| <i>P</i> , МПа | <i>D</i> <sub>1</sub> , мм | <i>D</i> <sub>2</sub> , мм | $k_1^{},{ m MKM}^2$ | <i>k</i> <sub>2</sub> , мкм <sup>2</sup> | $k_{ m эф,}$ мкм <sup>2</sup> | <i>d</i> <sub>п ср</sub> , мкм | $E_1$  |
|----------------|----------------------------|----------------------------|---------------------|------------------------------------------|-------------------------------|--------------------------------|--------|
| 80             | 43,56                      | 47,67                      | 49,3                | 19,2                                     | 37,76                         | 31                             | 0,1982 |
| 100            | 42,79                      | 47,12                      | 48,9                | 19,0                                     | 36,60                         | 29                             | 0,2086 |
| 120            | 42,19                      | 46,65                      | 43,9                | 12,5                                     | 27,94                         | 24                             | 0,2202 |
| 140            | 41,71                      | 46,24                      | 37,1                | 9,5                                      | 21,91                         | 22                             | 0,2128 |

| Таблииа 1. | Свойства | двухслойного | ФВМ из | МКО-а | <b>р</b> ракций |
|------------|----------|--------------|--------|-------|-----------------|
|            |          |              |        |       |                 |

Таблица 2. Свойства трехслойного ФВМ из МКО-фракций

| Р, МПа | <i>D</i> <sub>1</sub> , мм | <i>D</i> <sub>2</sub> , мм | <i>D</i> <sub>2</sub> , мм | <i>k</i> <sub>1</sub> , мкм <sup>2</sup> | k <sub>2</sub> , мкм <sup>2</sup> | <i>k</i> <sub>2</sub> , мкм <sup>2</sup> | $k_{\rm adh}$ мкм <sup>2</sup> | <i>d</i> <sub>и оп</sub> , мкм | $E_1$  |
|--------|----------------------------|----------------------------|----------------------------|------------------------------------------|-----------------------------------|------------------------------------------|--------------------------------|--------------------------------|--------|
| 80     | 43.56                      | 47.67                      | 48.42                      | 49.3                                     | 31.2                              | 19.2                                     | <sup>3φ,</sup><br>41.85        | 31                             | 0.2087 |
| 100    | 42.79                      | 47.12                      | 48.03                      | 48.9                                     | 25.4                              | 19.0                                     | 38.65                          | 29                             | 0.2144 |
| 120    | 42,19                      | 46,65                      | 47,69                      | 43,9                                     | 19,1                              | 12,5                                     | 30,85                          | 24                             | 0,2314 |
| 140    | 41,71                      | 46,24                      | 47,39                      | 37,1                                     | 16,2                              | 9,5                                      | 25,13                          | 22                             | 0,2279 |

#### Таблица 3. Свойства трехслойного ФВМ из МКО-фракций

| <i>P</i> , МПа | <i>D</i> <sub>1</sub> , мм | <i>D</i> <sub>2</sub> , мм | <i>D</i> <sub>3</sub> , мм | <i>k</i> <sub>1</sub> , мкм <sup>2</sup> | <i>k</i> <sub>2</sub> , мкм <sup>2</sup> | k <sub>3</sub> , мкм <sup>2</sup> | $k_{ m эф,}$ мкм <sup>2</sup> | <i>d</i> <sub>п ср</sub> , мкм | $E_1$  |
|----------------|----------------------------|----------------------------|----------------------------|------------------------------------------|------------------------------------------|-----------------------------------|-------------------------------|--------------------------------|--------|
| 80             | 43,56                      | 48,03                      | 48,85                      | 49,3                                     | 42,6                                     | 19,2                              | 45,37                         | 31                             | 0,2173 |
| 100            | 42,79                      | 47,42                      | 48,45                      | 48,9                                     | 38,3                                     | 19,0                              | 43,29                         | 29                             | 0,2269 |
| 120            | 42,19                      | 46,92                      | 48,09                      | 43,9                                     | 34,2                                     | 12,5                              | 36,72                         | 24                             | 0,2525 |
| 140            | 41,71                      | 46,47                      | 47,77                      | 37,1                                     | 30,9                                     | 9,5                               | 30,45                         | 22                             | 0,2508 |

Таблица 4. Свойства четырехслойного ФВМ из МКО-фракций

| Р, МПа | <i>D</i> <sub>1</sub> , мм | <i>D</i> <sub>2</sub> , мм | <i>D</i> <sub>3</sub> , мм | <i>D</i> <sub>4</sub> , мм | <i>k</i> <sub>1</sub> , мкм <sup>2</sup> | <i>k</i> <sub>2</sub> , мкм <sup>2</sup> | <i>k</i> <sub>3</sub> , мкм <sup>2</sup> | <i>k</i> <sub>4</sub> , мкм <sup>2</sup> | $k_{ m ody}$ мкм <sup>2</sup> | <i>d</i> <sub>п ср</sub> , мкм | E <sub>1</sub> |
|--------|----------------------------|----------------------------|----------------------------|----------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------|--------------------------------|----------------|
| 80     | 43,56                      | 48,02                      | 49,14                      | 49,50                      | 49,3                                     | 42,6                                     | 31,2                                     | 19,2                                     | 45,64                         | 31                             | 0,2179         |
| 100    | 42,79                      | 47,42                      | 48,80                      | 49,27                      | 48,9                                     | 38,3                                     | 25,4                                     | 19,0                                     | 42,85                         | 29                             | 0,2257         |
| 120    | 42,19                      | 46,92                      | 48,48                      | 49,05                      | 43,9                                     | 34,2                                     | 19,1                                     | 12,5                                     | 36,34                         | 24                             | 0,2512         |
| 140    | 41,71                      | 46,47                      | 48,19                      | 48,85                      | 37,1                                     | 30,9                                     | 16,2                                     | 9,5                                      | 30,38                         | 22                             | 0,2505         |



Рис. 2. Значения коэффициентов проницаемости в зависимости от давления прессования: а – однослойного ФВМ из МКО-фракции (-0,2...+0,1) мм; б – двухслойного ФВМ из МКО-фракций (-0,63...+0,4) и (-0,2...+0,1) мм; в – трехслойного ФВМ из МКО-фракций (-0,63...+0,4), (-0,315...+0,2) и (-0,2...+0,1) мм; *г* - трехслойного ФВМ из МКО-фракций (-0,63...+0,4), (-0,4...+0,315) и (-0,2...+0,1) мм; *д* – четырехслойного ФВМ из МКО-фракций (-0,63...+0,4), (-0,4...+0,315), (-0,315...+0,2) и (-0,2...+0,1) мм



Рис. 3. Значения параметра эффективности в зависимости от давления прессования (а-д - см. рис. 2)



Рис. 4. Изменение (возрастание) коэффициентов проницаемости многослойных ФВМ по сравнению с однослойным при давлении прессования 80 МПа (*a*–*d* – см. рис. 2)



2,5 2 1,5 0,5 0 Варианты однослойного и многослойных ФВМ

Рис. 5. Изменение (возрастание) коэффициентов проницаемости многослойных ФВМ по сравнению с однослойным при давлении прессования 100 МПа (*a*-*d* – см. рис. 2)



Рис. 6. Изменение (возрастание) параметра эффективности *E*<sub>1</sub> многослойных ФВМ по сравнению с однослойным при давлении прессования 80 МПа (*a*-*∂* – см. рис. 2)

Рис. 7. Изменение (возрастание) параметра эффективности *E*<sub>1</sub> многослойных ФВМ по сравнению с однослойным при давлении прессования 100 МПа (*a*–*d* – см. рис. 2)

В качестве примеров показано изменение (возрастание) коэффициентов проницаемости и параметров эффективности многослойных ФВМ по сравнению с однослойным при давлениях прессования 80 МПа (рис. 4, 6) и 100 МПа (рис. 5, 7).

Заключение. На основании ранее проведенных экспериментальных исследований предложена методика, позволяющая прогнозировать геометрические параметры и гидродинамические свойства многослойных ФВМ и оценивать параметры их эффективности.

Анализ рассчитанных величин коэффициента проницаемости и параметра эффективности показывает, что эти величины для двухслойного ФВМ возрастают по сравнению с однослойным в 2 и 1,4 раза соответственно, для трехслойного – в 2,3 и 1,5 раза соответственно. Дальнейшее увеличение количества слоев практически не приводит к увеличению коэффициента проницаемости и параметра эффективности.

При решении практических задач во многих случаях, с нашей точки зрения, целесообразно ограничиться созданием двухслойных ФВМ.

### Литература

1. **Маршина, Е. А.** Исследование структурных и гидродинамических свойств пористых волокнистых материалов из медных волокон / Е. А. Маршина, В. А. Вольский, В. М. Капцевич // Новые материалы и технологии их обработки: сб. науч. работ IX Респ. студ. науч.-техн. конф. – Минск: Метолит, 2008. – С. 145–146.

2. Ильющенко, А. Ф. Проницаемые материалы из медных кабельных отходов. Сообщение 2. Закономерности уплотнения медных волокновых отходов / А. Ф. Ильющенко, В. М. Капцевич, В. К. Корнеева // Порошковая металлургия: сб. науч. ст. / Нац. акад. наук Беларуси [и др.]; редкол.: П. А. Витязь (гл. ред.); [и др.]. – Минск, 2013. – Вып. 36. – С. 250–256.

3. **Ильющенко, А. Ф.** Проницаемые материалы из медных кабельных отходов. Сообщение 3. Взаимосвязь структурных и гидродинамических свойств проницаемых материалов из медных волокновых отходов, полученных методом сухого изостатического прессования / А. Ф. Ильющенко, В. М. Капцевич, В. К. Корнеева // Порошковая металлургия: сб. науч. ст. / Нац. акад. наук Беларуси [и др.]; редкол.: А. Ф. Ильющенко (гл. ред.) [и др.]. – Минск, 2014. – Вып. 37. – С. 121–126.

4. Капцевич, В. М. Особенности укладки медных волокновых отходов при засыпке в кольцевые зазоры при получении длинномерных фильтроэлементов методом СИП / В. М. Капцевич, В. К. Корнеева // Новые материалы и технологии: порошковая металлургия, композиционные материалы, защитные покрытия, сварка: матер. 12-й Междунар. науч.техн. конф. (Минск, 25–27 мая 2016 г.) / Нац. акад. наук Беларуси [и др.]; редкол.: А. Ф. Ильющенко (гл. ред.) [и др.]. – Минск: Беларус. навука, 2016. – С. 81–84.

5. Проницаемые материалы из медных кабельных отходов. Сообщение 4. Совершенствование метода сухого изостатического прессования для изготовления композиционных многослойных трубчатых фильтроэлементов на основе медных волокновых отходов / А. Ф. Ильющенко [и др.] // Порошковая металлургия: сб. науч. ст. / Нац. акад. наук Беларуси [и др.]; редкол.: А. Ф. Ильющенко (гл. ред.) [и др.]. – Минск, 2015. – Вып. 38. – С. 162–165.

6. **Проницаемые** материалы из металлических волокон: свойства, технологии изготовления, перспективы применения / В. М. Капцевич [и др.]. – Минск: БГАТУ, 2013. – 380 с.

### PERMEABLE MATERIALS MADE OF COPPER CABLE WASTES MESSAGE 6. FORECASTING THE PROPERTIES OF MULTILAYER TUBE ELEMENTS BASED ON COPPER CABLE WASTES PRODUCED BY DRY ISOSTATIC PRESSING TECHNIQUE

### V. M. Kaptsevich, V. K. Korneeva

Belarusian State Agrarian Technical University, Minsk, Belarus, e-mail: lerakor1974@mail.ru

According to earlier conducted experimental studies, a technique has been proposed that allows forecasting geometric parameters (layer thickness) and hydrodynamic properties of multilayer filter fiber materials and evaluating the parameters of their efficiency.