ПЕРЕРАБОТКА И УПРАВЛЕНИЕ КАЧЕСТВОМ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОДУКЦИИ

рузы на постоянных участках применяли в первый год в дозе 4-5 кг/га. На второй год дозу снижали до 1–1,5 кг/га с последующим применением аминной соли 2,4-Д. При выращивании кукурузы в севообороте Симазин и Атразин применяли в минимальной дозе - 1 кг/га в сочетании с другими гербицидами: аминной солью 2,4-Д - 2,5 кг/га, Диаленом - 1,5-2,0 кг/га или бутиловым эфиром 2,4-Д - 0,5-1,0 кг/га [50]. Указанные гербициды были запрещены в связи с аварией на Чернобольской АЭС. В связи с этим поиск новых более эффективных и безопасных гербицидов и их смесей для защиты посевов кукурузы в Беларуси стал очень актуальным.

Для борьбы с доминирующими сорняками, такими как просо куриное, марь белая, горцы, трехреберник непахучий, фиалка полевая, а из многолетних - пырей ползучий, в последнее время появился ряд перспективных гербицидов: Базис, 75 % в.р.г. (20-25 г/га + 0,2 л/га ПАВ Виволт); Титус, 25 % с.т.с Γ (40-50 г/га + 0,2 л/га ПАВ Виволт); Самсон 4, СК (1,0-1,5 л/га); МайсТер, ВД Γ (100-125 г/га + 1,0 л/га БиоПауэр), которые вносятся в фазе 3-5 листьев кукурузы. Данные гербициды эффективно подавляют как малолетние двудольные и злаковые, так и пырей ползучий.

Против однолетних двудольных и злаковых сорняков в посевах кукурузы применяются гербициды корневого (почвенного) действия: Гардо Голд, КС (3,0-4,0 л/га); Люмакс, СЭ (3,0-4,0 л/га) и др. Гербициды Гардо Годд, КС и Люмакс, СЭ можно применять в ранний послевсходовый период (фаза кукурузы 2-3 листа), когда малолетние двудольные сорняки находятся в фазе семядольных листьев. Внесение гербицидов Фронтьер Оптима, КЭ и Дуал Голд, КЭ не позволяет в полной мере очистить посевы кукурузы от мари белой. Поэтому рекомендуется применять эти препараты в баковых смесях с гербицидами, эффективными против мари белой.

Экономически выгодно применение гербицидов, состоящих из нескольких компонентов, или баковых смесей с более широким спектром действия. Химическая прополка проводится в соответствии с регламентами, установленными действующим «Государственным реестром средств защиты растений и удобрений, разрешенных к применению на территории Республики Беларусь».

Список использованной литературы

- 1. Гулидов, А.М. Как снизить засорённость почвы и посевов / А.М. Гулидов // Защита и карантин растений. -1998. -№3. -С. 26–28.
- 2. Рекомендации по борьбе с сорными растениями в посевах сельскохозяйственных культур / С.В. Сорока и [др.]. 2-е изд., испр. и доп. Минск, 2005. 103 с.
- 3. Возделывание кукурузы на зерно и силос / Н.Ф. Надточаев [и др.] //Современные ресурсосберегающие технологии производства растениеводческой продукции в Беларуси, РУП «Научнопрактический центр НАН Беларуси по земледелию». – Минск. – 2017. С. 453–492.
- 4. Привалов, Ф. И. Рекомендации по возделыванию кукурузы нам зерно и зеленую массу / Ф.И. Привалов, Н.Ф. Надточаев, Д.В. Лужинский. Минск: Журнал «Белорусское сельское хозяйство», 2016.-52 с.

УДК 633.11 «324»

Афонченко Н.В., кандидат сельскохозяйственных наук

Курский федеральный аграрный научный центр, Российская Федерация

УРОЖАЙ И КАЧЕСТВО ЗЕРНА ОЗИМОЙ ПШЕНИЦЫ В СКЛОНОВОМ АГРОЛАНДШАФТЕ

Территория Курской области по рельефу представляет собой приподнятую всхолмленную равнину. На эрозионно-опасных территориях в результате нерационального использования происходит деградация почвенного покрова, ухудшение почвенного плодородия и соответственно снижения урожайности и качества сельскохозяйственных культур [1]. Аграрии неизбежно сталкиваются с проблемой неоднородности урожайности культур даже в пределах одного поля, контуры которого могут одновременно располагаться с различными параметрами почвенного плодородия и рельефа [2, 3].

Исследования проводились на полигоне с куполообразной формой рельефа площадью 86 га в поселке Панино Медвенского района Курской области, расположенный на высоте 190–217 м над уровнем моря. Разница высотных отметок достигает 29,5 м. Рельеф полигона типично эрозионный, с выраженной волнистостью, особенно в нижних частях склонов. Средний уклон полигона в градусах

составляет 2,31°. Исследования проводились на склонах северо-восточной, северо-западной, юго-восточной и юго-западной экспозициях в 2019—2022 годах. Территория Курской области по рельефу представляет собой приподнятую всхолмленную равнину. На эрозионно-опасных территориях в результате нерационального использования происходит деградация почвенного покрова, ухудшение почвенного плодородия и соответственно снижения урожайности и качества сельскохозяйственных культур. Почвы — чернозем типичный и выщелоченный различной степени смытости и намытости на лёссовидных суглинках. Характер комплексности почвенного покрова меняется от вершины вниз по склону. Учет урожая озимой пшеницы проводили методом отбора снопов в 4-х кратной повторности (50 х 50 см) в 32 точках полигона, урожайность рассчитывалась путем пересчета (на 14 % влажность зерна) на 1 гектар [4]. Структурный анализ урожая озимой пшеницы проводили по методике Государственного сортоиспытания. Для оценки почвенных ресурсов проводили анализ показателей: влажность почвы — термостатно-весовым методом, содержание гумуса — по методу Тюрина.

В среднем за 2019–2021 годы ГТК равен 1,1, который характеризует, что состояние увлажнения растений в среднем за годы исследований было удовлетворительное.

В таблице 1 представлены статистические показатели запасов продуктивной влаги в мм в среднем по полигону за 2019–2022 годы. Из таблицы видно, что угол уклона полигона варьировал от 0,260 до 5,690. В среднем за годы исследований этот показатель варьировал в процентах от 53,6 % в 2019 году до 46,8 % в 2022 году. Запасы продуктивной влаги наибольшими в метровом слое почвы были на склоне северо-восточной экспозиции и оценивались как хорошие. Наименьшие запасы продуктивной влаги отмечались на склонах юго-восточной и юго-западной экспозициях и оценивались как удовлетворительные [5].

Таблица 1. Статистические показатели запасов	продуктивной влаги ((мм) за 2019, 2021 гг.
--	----------------------	------------------------

Статистические по-	Уголуклона, в	Запасы продуктивной влаги, мм				
казатели	градусах	0 – 30см	0 – 50 см	0 -100 см		
	2019					
Среднее	2,24	43,3	73,8	133,9		
St. отклонение	1,20	3,2	5,2	10,9		
Min	0,31	36,7	60,7	115,9		
Max	4,51	49,5	85,2	158,0		
V% (варьирование)	53,6	7,4	7,1	8,1		
HCP ₀₅		1,73	4,7	5,9		
2021						
Среднее	2,79	50,9	75,6	89,6		
St. отклонение	1,36	3,3	8,5	22,7		
Min	0,26	45,5	60,7	60,7		
Max	5,69	58,9	95,2	166		
V% (варьирование)	48,7	7,1	11,4	13,7		
HCP ₀₅		1,9	4,3	12,4		

В таблице 2 приводятся статистические показатели урожая и качества зерна озимой пшеницы сорт Синтетик. В среднем за 2019 и 2021 годы высота растений озимой пшеницы была наибольшей на склоне северо-западной экспозиции и была на 5,9 см выше, чем на склоне юго-восточной экспозиции, где она была в среднем наименьшей. Длина колоса в среднем по экспозициям изменялась от 6,2 см (юго-западная экспозиция) до 7,1 см (северо-восточная экспозиция). На склоне северо-восточной экспозиции длина колоса озимой пшеницы в среднем была наибольшей. Количество зерен в колосе озимой пшеницы наибольшим было на склонах юго-восточной экспозициях и составляло в среднем 28 зерен. На склоне юго-западной экспозиции в среднем количество зерен составляло 24 штуки. Масса 1000 зерен на полигоне варьировала в среднем незначительно и изменялась от 36,4 г (юго-западная экспозиция) до 37,0 г (северо-западная экспозиция) и 37,2 (юго-восточная экспозиция) и оценивалась как высокая (масса 1000зерен более 30 г). Средняя натура зерна озимой пшеницы на полигоне составила 775 г/л (показатель выше среднего - 765-784 г/л) и изменялась в среднем от 762 г/л (северовосточная экспозиция) до 791г/л (северо-западная экспозиция). В среднем наибольшая натура зерна отмечалась на склоне юго-западной экспозиции – 780 г/л. На склоне северо-восточной экспозиции натура зерна в среднем была на 16 г/л ниже, чем на склоне юго-западной экспозиции и оценивалась как средняя (725 – 764 г/л). Содержание клейковины в зерне озимой пшеницы на полигоне изменялось от 25,3 до 47,7 %, средняя её величина составила 34 %. В среднем на плакоре, северо-западном и северо - восточном склонах её величина составляла 35,7; 34,6 и 35,8, на юго-восточной и юго-западной экспозициях её величина составляла в среднем соответственно 32,5 и 32,3 % и относилась к I и II группам. В среднем наибольший урожай озимой пшеницы отмечался на склонах юго-восточной и северо-восточной экспозициях и составлял 52,4 и 52,3 ц/га, это на 5,6 и 5.5 ц/га выше, чем на склоне юго-западной экспозиции.

Таблица 2. Статистические показатели урожая и качества зерна озимой пшеницы

Показатели	Высота	Длина	Количество зерен	Macca	Натура	Урожай	Клейко-
	растений, см	колоса,	в колосе, шт.	1000	зерна, г	зерна, ц/га	вина, %
		СМ		зерен, г			
2019Γ							
Max	61,0	8,0	38	39,1	797	60,3	
Min	44,0	4,4	17	34,1	738	39,2	
Х сред	52,8	6,5	29	36,9	770	51,3	
St отклонен.	4,9	0,8	5,18	1,58	13,1	5,61	
V, %	9,3	12,3	17,1	2,9	1,7	10,9	
HCP ₀₅	3,1	0,5	3,6	1,0	8,9	5,1	
2021 г		•					
Max	55,9	9,4	29	40,0	816	64,7	40,4
Min	42,3	5,1	16	32,9	707	30,2	25,3
Х сред	49,3	6,8	24	36,6	780	48,8	34,6
St отклонен.	3,8	0,79	3,19	2,06	22,5	8,12	2,84
V, %	7,7	11,6	13,3	5,6	2,9	16,6	8,2
HCP ₀₅	2,4	0,61	1,62	1,02	13,9	4,7	3,9
средняя							
Max	58,4	8,7	33,5	39,6	807	62,5	
Min	43,2	4,8	17	33,5	723	34,7	
Х сред	51,1	6,7	26,5	36,8	775	50,1	
St отклонен.	4,35	0,80	4,19	1,82	17,8	6,87	
V, %	8,5	12,0	15,2	5,7	2,3	7,8	
HCP ₀₅	2,8	0,6	2,6	1,01	11,4	4,9	

В таблице 3 показана средняя корреляционная связь урожая и уклона в градусах и средняя корреляционная связь между содержанием гумуса и клейковины зерна.

Таблица3. Корреляционная связь урожая и качества зерна озимой пшеницы с показателями плодородия почвы

Показатель	Уравнение регресии	\mathbb{R}^2	г (коэф.корреляции)
Уклон и урожай ц/га	У=2,488x +4734	0,235	0,48
Гумус и клейковина	y = -0.011x + 5.823	0,159	0,4

Исследования, проведенные на экспериментальном полигоне с куполообразной формой рельефа (86 га, п. Панино, Медвенский р-н, Курской области) в 2019–2021 годах показали, что влажность почвы, величина урожайности и показатели качества зерна озимой пшеницы изменялись по экспозициям склона.

Список использованной литературы

- 1. Мамонтов, В.Г. Изменение структурного состояния чернозема типичного Курской области под влиянием бессменных пара и озимой пшеницы / В.Г. Мамонтов, Р.Ф. Байбеков , В.И. Лазарев, С.А. Юдин, С.А. Цветков, Е.Б. Таллер // Земледелие, 2019 № 1, С. 7–10.
- 2. Масютенко, Н.П./ Содержание микроэлементов в черноземе типичном в зависимости от степени его эродированности // Н.П. Масютенко, А.И. Санжаров, Г.П. Глазунов, А.В. Кузнецов. Н.В. Афонченко. Вестник Курской государственной сельскохозяйственной академии. − 2015, № 1, − С. 40–44.
- 3. Чуян, О.Г. База данных для регулирования физико-химических свойств кислотных почв в адаптивно-ландшафтном земледелии (для Центрального Черноземья) / О.Г. Чуян, Курск ГНУ ВНИ-ИЗиЗПЭ РАСХН, 2012.-78 с. ISBN 978-5-905622-18-2.2.
- 4. Доспехов, Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований) / Б.А. Доспехов Изд. 5-е доп. и перераб. М.: Агропромиздат, 1985. 351 с.