УДК 664.83

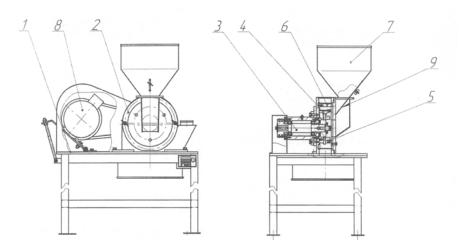
3.В. Ловкис, В.В. Чуешков (РУП «НПЦ НАН Беларуси по продовольствию», г. Минск, Республика Беларусь)

ВЫБОР И ОБОСНОВАНИЕ ПАРАМЕТРОВ ИЗМЕЛЬЧИТЕЛЯ СУХИХ НАТУРАЛЬНЫХ КРАСЯЩИХ ВЕЩЕСТВ

Введение

Для улучшения товарного вида, пищевой ценности, вкусовых качеств и цвета продуктов питания производители применяют красители натуральные, синтетические и неорганические. В основном пищевые красители в настоящее время в Республику Беларусь импортируются, на что требуются значительные валютные средства.

Основные требования для красителей: нетоксичность и безвредность для организма человека. Что касается синтетических красителей, то они не обладают пищевой ценностью и гарантией безвредности для здоровья человека [1–3].


До настоящего времени в Республике Беларусь отсутствовали технологии, соответствующее оборудование и рекомендации по получению натуральных красящих веществ для использования в качестве добавок к пищевым продуктам (мороженому, безалкогольным напиткам, кондитерским изделиям) для придания им необходимой цветовой гаммы.

В РУП «Научно-практический центр Национальной академии наук Беларуси по продовольствию» разработана технология и комплекс технических средств для приготовления натуральных красящих веществ из растительного сырья, которые внедрены в РУП «Технопрод» в г. Марьина Горка [4].

Заключительной и наиболее важной операцией технологии приготовления красящих веществ является измельчение. Растительное сырье проходит мойку, сортировку, резку, сушку, бланшировку и затем измельчение.

Устройство и рабочий процесс измельчителя

В качестве измельчителя рассматривается аппарат молотковоштифтового типа (рисунок 57).

- 1 -стол;
- 2 корпус;
- 3 вал;
- **4** ротор;
- 5 неподвижный барабан;
- **6** решето;
- **7 бункер**;
- 8 привод;
- 9 заслонка

Рисунок 57 – Общий вид измельчителя

Рабочий процесс осуществляется следующим образом. Грубо измельченный высушенный полуфабрикат подается в бункер измельчителя. Через дозирующую щель заслонки материал поступает в рабочую зону измельчителя. Рабочая часть измельчителя состоит из ротора с рабочими элементами в виде молотков и штифтов и неподвижного барабана с фигурными штифтами. При взаимодействии рабочих элементов с материалом осуществляется его измельчение. Достигнув требуемой степени измельчения, материал просеивается через решетчатую поверхность барабана и поступает в приемную емкость и далее на упаковку.

Основная часть

Для определения параметров измельчителя проводились исследования. При исследованиях определялись качественные, технологические и энергетические показатели. В качестве основного критерия при определении частоты вращения рабочих органов принят модуль помола [5].

При заданном выходе измельченного материала 35, 45 и 95% в течение постоянного времени измельчения (нами приняты 3 минуты) были определены частоты вращения рабочих органов. Для каждой частоты вращения определялся модуль помола материала.

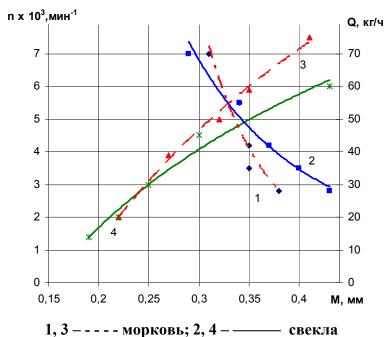
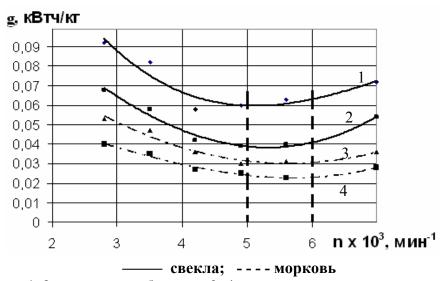



Рисунок 58 - 3ависимости частоты вращения рабочих органов (1, 2) n и производительности измельчителя (3, 4) Q для свеклы и моркови от модуля помола

На рисунке 58 представлены зависимости частоты вращения рабочих органов и производительности измельчителя от модуля помола. Из графика видно, что с увеличением скорости рабочих органов измельчителя модуль уменьшается по криволинейной зависимости и при достижении оборотов 5000-7000 *мин*⁻¹ значение модуля минимально и равно 0,27–0,32 мм.

Производительность измельчителя увеличивается по криволинейному закону с увеличением модуля помола.

В качестве дополнительного критерия при выборе скорости вращения рабочих органов принята удельная энергоемкость процесса измельчения. На рисунке 59 представлена зависимость энергоемкости процесса измельчения от частоты вращения рабочих органов.

1, 3 – молоток зубчатый; 2, 4 – молоток прямоугольный Рисунок 59 – Зависимость удельной энергоемкости процесса измельчения от частоты вращения рабочих органов

Из графика видно, что с увеличением скорости ротора удельная энергоемкость для каждого испытываемого материала И разных форм рабочих органов сначала снижается и достигает минимального значения при частоте вращения 5000-7000 MUH^{-1} . При скоростях, превышающих эти

значения, удельная энергоемкость процесса возрастает.

Рост мощности измельчителя с увеличением скорости рабочих органов можно объяснить тем, что образуемый ротором воздушный поток сжимает материал и способствует лучшему проходу материала через решетчатую поверхность корпуса. Этот фактор вызывает дополнительное увеличение энергозатрат и приводит к более быстрому выходу измельченного материала из дробилки.

Анализируя процесс измельчения по качеству работы и энергоемкости процесса, рациональной частотой вращения рабочих органов можно считать 5600 мин⁻¹.

Прямоугольный молоток в сравнении с зубчатым по энергоемкости имеет наименьшее значение при разной частоте вращения ротора. Модуль измельчения для зубчатых молотков ниже. Рост энергоемкости для ротора с зубчатыми молотками объясняется дополнительными сопротивлениями, возникающими при работе измельчителя, а улучшение качества — лучшим взаимодействием молотков этой формы с материалом и его перетиранием.

Энергоемкость процесса измельчения ниже для прямоугольных молотков. Учитывая сказанное, можно заключить, что хотя зубчатый молоток обеспечивает незначительное улучшение качества измельчения, однако по технологическим и энергетическим показателям лучшей формой молотка следует считать прямоугольную. Поэтому прямоугольные молотки рекомендованы в качестве рабочих органов измельчителя.

Рабочие органы в виде молотков при вращении кроме измельчающей функции выполняют роль вентиляторных лопастей. Они создают разряжение в камере измельчения, благодаря чему воздух всасывается в отверстия, отклоняя поток частиц. Это обеспечивает более равномерное распределение мате-

риала по всей решетчатой поверхности корпуса измельчителя, исключает вибрацию и улучшает надежность измельчителя.

Для определения параметров измельчителя по его заданной производительности составлена номограмма (рисунок 60), на которой штриховыми линиями указана последовательность выбора данных при определенной производительности измельчителя 65 кг/ч ($n = 5600 \text{ мин}^{-1}$; N = 1,3 кВm; l = 16 мм; M = 0,35 мм).

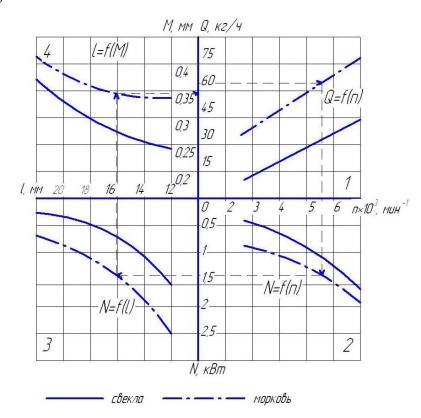


Рисунок 60 – Номограмма для определения параметров измельчителя

Годовой доход от использования измельчителя составляет 3549,85 тыс. руб.

Заключение

- 1. Разработана технология для получения натуральных красящих веществ с применением измельчителя в технологическом комплексе в РУП «Технопрод» в г. Марьина Горка.
- 2. На основе экспериментально-теоретических исследований обоснованы и определены параметры конструкции и режимы работы измельчителя натурального сырья: для модуля измельчения 0,35 *мм* оптимальная частота вращения рабочих органов 5600 *мин*⁻¹, диаметр отверстий сит 0,45 *мм*, зазор между молотками и ситом 16-18 *мм*, коэффициент заполнения камеры измельчения при этом должен быть не менее 0,75, удельная энергоемкость составила 0,033 *кВт*·ч/кг, производительность измельчителя 50 кг/ч.
- 3. Составлена номограмма для определения параметров измельчителя по заданной его производительности.

Литература

- 1. Цыганова, Т.Б. Пищевые красители для кондитерских изделий / Т.Б. Цыганова, Л.С. Кузнецова, М.Ю. Сиданова. СПб.: ГИОРД, 2002. 120 с.
- 2. Вольшонок, М.З. Пищевые красители нового тысячелетия / М.З. Вольшонок // Пищевые ингредиенты. 2001. N 2001. –
- 3. Архипова, А.Н. Пищевые красители, их свойства и применение / А.Н. Архипова // Пищевая промышленность. 2000. № 4. С. 66-69.
- 4. Ловкис, З.В. Комплекс для производства полуфабриката продовольственного красителя из растительного сырья / З.В. Ловкис, В.В. Чуешков, Д.А. Зайченко, Ч.С. Дашкевич // Агропанорама. 2005. № 4. С. 5-8.
- 5. Чуешков, В.В. Исследование рабочих органов измельчителя для приготовления натуральных красителей / В.В. Чуешков // Механизация и электрификация сельского хозяйства: межвед. тематич. сб. / РУНИП «ИМСХ НАН Беларуси»; под общ. ред. В.Н. Дашкова. Минск, 2006. Вып.40. С. 301-307.

УДК 63:(620.95:504.064.34)

Ю.А. Сунцова, Н.Ф. Капустин (РУП «НПЦ НАН Беларуси по механизации сельского хозяйства», г. Минск, Республика Беларусь)

ЭНЕРГЕТИЧЕСКИЕ АСПЕКТЫ АНАЭРОБНОЙ ПЕРЕРАБОТКИ ОРГАНИЧЕСКИХ ОТХОДОВ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПРОИЗВОДСТВА

Введение

Осуществление программы энергосбережения приобрело особую значимость для экономики каждой страны. Это, прежде всего, связано с ограниченностью запасов топливно-энергетических ресурсов и повышением цен на энергоносители. Внедрение в агропромышленный комплекс энергоэффективных технологий, энергосберегающего оборудования позволит снизить энергетическую составляющую себестоимости выпускаемой продукции, будет способствовать ее конкурентоспособности на мировом рынке. Получение дополнительного ресурсо- и энергосберегающего эффекта способствует совершенствованию технологий и меньшему загрязнению окружающей среды.

Для разрешения проблем энергосбережения необходимо использовать в производстве энергии местные биологически возобновляемые энергосырьевые ресурсы. К ним относятся отходы растительного и животного происхождения.

Агропромышленный комплекс — один из ведущих секторов народного хозяйства Республики Беларусь. Крупные животноводческие комплексы негативно влияют на экологическую обстановку в районах их размещения. Загрязнению подвергаются почва, атмосфера, грунтовые воды и открытые водоемы. Использование биогазовой технологии позволяет уменьшить воздействие крупных животноводческих хозяйств на окружающую среду и получить при этом электрическую и тепловую энергию, а также органоминеральные удобрения.