На рисунке 1 видно, что структура опытных образцов однородна, отчетливо видны кристаллы кварца и железосодержащих фаз.

Разработанные электроизоляционные керамические материалы оптимального состава характеризуются следующими свойствами: водопоглощением 0,15–9,2 %, открытой пористостью 0,37–24,1 %, кажущейся плотностью 2319,5–2529,0 кг/м³, температурным коэффициентом линейного расширения при 300 °C – $(4,6-5,8)\cdot10^{-6}$ K⁻¹, химической устойчивостью к щелочам – (98,4-99,8) %, к кислотам – (96,1-99,2) %, удельном объемным электрическим сопротивлением при 100 °C – 10^{13} – 10^{14} Ом·см, пробивной напряженностью 30–34 кВ/мм, T_E – 790–840 °C.

Список использованных источников

1. Масленникова, Г.Н. Технология электрокерамики / Г.Н. Масленникова. – М. : «Энергия», 1974 - 224 с.

Слонская С.В., к.х.н., доцент; Лубинский Н.Н., к.х.н. Белорусский государственный аграрный технический университет, Минск, Республика Беларусь ФУНКЦИОНАЛЬНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ ТВЕРДОГО РАСТВОРА ОРТОФЕРРИТА SrFeO₃₋₈

Ферриты типа RFeO₃, где R- ионы Y^{3+} , La^{3+} и других редкоземельных элементов, кристаллизуются в структуре искаженного перовскита. В литературе, особенно в области физики магнитных явлений, их часто называют ортоферритами, рассматривая как соли ортокислоты H_3 FeO₃. Наиболее подробно изучены их кристаллическая структура, магнитные и электрические свойства. Установлено, что ортоферриты редкоземельных элементов обладают слабым ферромагнетизмом. Они являются неколлинеарными антиферромагнетиками, температуры Неля которых заключены в интервале 620—720 К. У некоторых из них при определенной температуре происходит спин-переориентационный переход, т.е. изменение оси легкого намагничивания от оси a к оси c, или переориентационный переход от слабоферромагнитного состояния в антиферромагнитное состояние (переход типа Морина). Некоторое время считалось, что наличие самопроизвольной намагниченности у ортоферритов редкозе-

мельных элементов и α-Fe₂O₃ обусловлено присутствием различных примесей и дефектов кристаллической решетки. Однако затем теоретически и экспериментально было показано, что слабый спонтанный ферромагнетизм таких антиферромагнитных кристаллов как CoCO₃, α-Fe₂O₃, ортоферритов RFeO₃ является врожденным свойством и обусловлен отклонением спинов от строгой антипараллельности. Наиболее интенсивно магнитные и магнитооптические свойства ортоферритов редкоземельных элементов изучались в 70 не годы XX века в связи со специфической у них и у одноосных ферритовгранатов доменной структуры, на основе которой были созданы принципиально новые запоминающие устройства, носителями информации которых являются подвижные магнитные домены цилиндрической формы микронных размеров. Кристаллическая структусвойства ортоферритов электрические pa, магнитные И щелочноземельных элементов $AFeO_{3-\delta}$ (A-Ca²⁺, Sr^{2+} , Ba^{2+}) зависят от величины стехиометрического коэффициента (3-б) содержания кислорода, который может меняться в интервале 2,5-3,0 [1]. Феррит стронция SrFeO_{2.5} (SrO·0,5Fe₂O₃) имеет кристаллическую орторомбическую структуру типа браунмиллерина (Ca₂AlFeO₅) и его химическая формула записывается как $Sr_2Fe_2O_5$, $(2Sr^{2+}Fe^{3+}O_{2.5})$. Согласно [1] ортоферрит $SrFeO_{2.5}$ ($Sr_2Fe_2O_5$) со структурой браунмиллерита получается при обжиге на воздухе смеси порошков ($2SrCO_3 + Fe_2O_3$) при температурах выше 1473 К. Феррит стронция SrFeO₃₋₈ при значениях кислородного коэффициента (3-б) в интервале 2,72-3,0 имеет структуру перовскита, искажение которого и соотношение концентраций ионов Fe^{4+} , Fe^{3+} зависит от кислородной нестехиометрии. которая в свою очередь зависит от температуры и парциального давления кислорода [1]. Наиболее интенсивно физико-химические свойства твердых растворов со структурой перовскита на основе феррита $SrFeO_{3-\delta}$ и кобальтита $SrCoO_{3-\delta}$ стронция стали исследоваться после обнаружения у них большой кислород-ионной проницаемости и магнитосопротивления. Установлено, что твердые растворы $Sr_{1-x}La_xCo_{1-y}Fe_xO_{3-\delta}$ являются перспективными материалами для изготовления керамических кислородпроницаемых мембран [2] и запоминающих устройств магниторезистивного типа. В связи с этим опубликовано значительное число работ, посвященных изучению электронной и ионной электропроводности, магнитных и дру-

гих свойств твердых растворов систем $La_{1-x}Sr_xFeO_{3-\delta}$ [3] $SrFe_{1-}$ "Со"О₃₋₈ [4] со структурой перовскита, в которых проведено соответственно частичное гетеровалентное замещение ионов La^{3+} ионами стронция Sr^{2+} и изовалентное замещение ионов железа Fe^{4+} , Fe^{3+} ионами Co^{4+} , Co^{3+} находящихся в различных спиновых состояниях. При гетеровалентном частичном замещении ионов La³⁺ ионами Sr²⁺ в феррите LaFeO₃ согласно условию электронейтральности эквивалентная часть ионов Fe^{3+} переходит в Fe^{4+} , что и приводит к существенному изменению электрических и магнитных свойств. При образовании твердых растворов $Sr_{1-x}La_xFeO_{3-\delta}$ на основе феррита $SrFeO_{3-\delta}$ $_{\delta}$ частичное замещение ионов Sr^{2+} ионами La^{3+} приводит в железной подрешетке к переходу эквивалентного количества ионов Fe^{4+} , Fe^{3+} в Fe^{3+} , Fe^{2+} . Для того, чтобы такой переход $Fe^{4+} \rightarrow Fe^{3+}$, $Fe^{3+} \rightarrow Fe^{2+}$ не происходил, в феррите SrFeO_{3-δ} со структурой перовскита наряду с гетеровалентным замещением ионов Sr^{2+} ионами La^{3+} , необходимо провести гетеровалентное замещение ионов Fe^{4+} , Fe^{3+} ионами двухвалентных металлов (Mn^{2+} , Co^{2+} , Zn^{2+}). Феррит стронция $SrFe_{12}O_{19}$ со структурой магнетоплюмбита является магнитотвердым ферримагнетиком и из него изготавливают керамические постоянные магниты, широко используемые в различных областях науки и техники. До недавнего времени величина энергетического произведения (ВН)макс керамических анизотропных постоянных магнитов не превышало 37 кДж/м³. Однако в 1997 г. появилось сообщение [5], в котором показано, что твердый раствор $Sr_{0.7}La_{0.3}Fe_{11.7}Zn_{0.3}O_{19}$ позволяет изготавливать керамические постоянные магниты с величиной $(BH)_{\text{макс}} = 41 \text{ кДж/м}^3$. Известно, что синтез феррита стронция $SrFe_{12}O_{19}$ при нагревании смеси порошков $(SrCO_3 + 6Fe_2O_3)$ при температурах 1300-1500 К протекает через промежуточную стадию образования ортоферрита стронция SrFeO_{3-б}, взаимодействие которого с оксидом α -Fe₂O₃ и приводит к образованию SrFe₁₂O₁₉. Вероятно, синтез твердого раствора $Sr_{1-x}La_xFe_{12-x}M_xO_{19}$ (M- Zn^{2+} , Mn^{2+} , Со²⁺) со структурой магнетоплюмбита можно также провести, если взять в качестве прекурсора твердый раствор $Sr_{1-x}La_xFe_{1-x}M_xO_{3-\delta}$ со структурой перовскита или браунмиллерита. В связи с этим планируется изучить физико-химические свойства твердых растворов $Sr_{0.7}La_{0.3}Fe_{0.7}M_{0.3}O_{3-\delta}$ (M- Zn^{2+} , Mn^{2+} , Co^{2+} , (MnZn), (MnCo), (CoZn), полученных керамическим методом.

Список использованных источников

- 1. Takeda, Y. Phase Relation in the Oxygen Nonstoichiometric System, $SrFeO_x$ (2.5 $\leq x\leq 3.0$) / Y. Takeda et al. // J. of Solid State Chemistry. 1986. Vol.63. P. 237–249
- 2. Teraoka, Y. Oxygen permeation through perovskite-type oxides / Y. Teraoka et al. // Chem. Lett. 1985. P. 1743–1746.
- 3. Bahteeva, J.A. High-temperature ione transport in La_{1-x}Sr_xFeO_{3- δ} / J.A. Bahteeva et al. // J. Solid State Electrochem. 2004. Vol.8. P. 578–584.
- 4. Maignan, A. Magnetoresistance in the ferromagnetic metallic perovskite $Sr_xFeCo_xO_\delta$ / A. Maignan et al. // Solid State Sciences. 2001. Vol.3. P. 57–63.
- 5. Taguchi, T. High Energy Ferrite Magnets / T. Taguchi et al. // Supplement au Journal de Physique III de mars. 1997. P. C1-311-C1-312.

Тульев В.В., к.ф.-м.н., доцент Белорусский государственный технологический университет, Минск, Республика Беларусь ЭЛЕМЕНТНЫЙ СОСТАВ СТРУКТУР Ме/АІ, ПОЛУЧЕННЫХ ИОННО-АССИСТИРУЕМЫМ ОСАЖДЕНИЕМ

Ионно-лучевые технологии являются перспективными методами модифицирования свойств поверхности материалов [1, 2]. В процессе модифицирования в поверхностных слоях происходят сложные физико-химические процессы способные существенно изменить структуру и свойства поверхности [1, 2]. Изучение процессов, протекающих на поверхности при осаждении металлсодержащих покрытий в условиях ионного ассистирования, представляется важным для определения оптимальных условий получения покрытий с необходимыми свойствами. В работе предпринята попытка установить закономерности процессов взаимопроникновения элементов подложки и покрытия при осаждении тонких металлсодержащих покрытий и установления характера распределения элементов в приповерхностных слоях модифицированных образцов.

В данной работе на подложку из алюминия осаждались покрытия на основе Мо и W при ускоряющем напряжении U = 7, 15, 20 кB и