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Abstract  In the article on the principles of Fermet, 
Huygens obtaine the differential equations in the form of 
Hamilton, which describe the ray trajectories and wave 
fronts in inhomogeneous media. Established that the vector 
of Poynting-Umov’s determining the direction of energy 
propagation in inhomogeneous medium is coincident with 
the vector tangent to the ray. In the second part of the 
article established that the equations of the theory of rays’ 
propagation in inhomogeneous media have the form of 
equations of nonlinear dynamics and describe the 
emergence of deterministic chaos in the geometry of rays 
for a wide variety of types of heterogeneous structures. In 
this case, the rays behave randomly and their description 
you must go to the description based on the theory of 
random functions and fields. In the third part of the paper is 
considered a model which is equivalent to the random 
medium and the calculation of the coordinates of the ray 
(the mathematical expectation and correlation functions). 
Understanding of these characteristics gives information 
about the behavior of the trajectories of the rays for these 
models of media. The description of the behavior of rays 
on the basis of the equations of statistical mechanics is 
discussed in the article for functions of Markov’s type. 

Keywords  Ray, Inhomogeneous Media, Deterministic 
Chaos, Correlation Function, Probabilistic, Energy, 
Stochastic 

1. Introduction
The purpose of this paper is to present generalizations of 

the results obtained for the first time in the work of the 
authors for moveouts of rays and wave fronts. In media 
where this type of inhomogeneity has place the rays be 
have randomly and therefore, it is necessary to switch to 
the probabilistic models and corresponding methods. 

In the first of the article are formulated the basic 
equations which are obtained on the basis of the principles 

of Fermat, Huygens, and installed that lines of energy 
(vector of Poynting-Umov) and the rays path coincide. On 
the basis of the optical-mechanical analogy formulated the 
basic equations of the theory of wave propagation in the 
form of Hamilton are used in 2, 3 parts of the human body. 

Nonlinear differential equations for ray trajectories 
describe deterministic chaos in the geometry of rays for 
wide type of an inhomogeneity. It requires a shift to a 
probabilistic description of the kinematics of the rays. The 
third part describes the model of random media described 
on the basis of moments (mathematical expectation and 
correlation functions) as well as case governmental 
functions of Markov type. 

Simulation of wave propagation processes in 
inhomogeneous media is based on kinematic [1-4] and 
dynamic principles [5-10] for the process of ray 
propagation and wave surfaces (fronts) in different media. 

Huygens' principle of constructing wave fronts in 
according to algorithm of a contact transformation is easily 
implemented if the perturbation region is non-concave Fig. 
1.1a. 

Figure 1.1a.  Huygens' model for propagation of wave fronts 

If the emitting area has a concavity, the construction of 
the wave surface is shown in Fig. 1.1b. 

Presentation of the wave front in the form of the surface 
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is a mathematical idealization, because in reality, a wave is 
a volume configuration change of the medium points 
during the passage of a perturbation from some initial 
configuration to the final. In a homogeneous isotropic 
medium all front points have the same speed directed along 
the normal n , then during the time t∆  surface points 
are shifted by the same distance s  along the normal with 

the speed V . The wave surface at time point t t+ ∆ , 
constructed according to Huygens' principle as the 
concavity of secondary waves coincides with the surface, 
passing through the points lying on one and the same 
distance along the normal from the wave surface at time 
point t . These lines, which are orthogonal to the original 
radiating surface (in particular, points) in a homogeneous 
isotropic medium, are the rays along which the radiation 
energy propagates. 

 

Figure 1.1b.  Huygens model for propagation of wave front in case when 
the emining area has a concavity 

According to Newton's corpuscular theory, the energy 
is transferred along the rays, the construction of which in 
homogeneous isotropic media is carried out with purely 
geometrical methods. Approaches of Huygens and 
Newton are known as the optic and mechanical analogs in 
analytical mechanics [1-2]. With the approach of Newton 
is associated the analogy of particle motion by inertia 
under the influence of the initial pulse and in the absence 
of any effects during the movement. With the approach of 
Huygens is associated the analogy of contact 
transformations in the Hamiltonian mechanics, 
representing a canonical transformation of generalized 
coordinates and momenta. 

An approach based on the construction of rays is 
effective in solving problems of the wave kinematics by 
geometrical methods for homogeneous isotropic media, 
including the case of transmission and reflection of waves 
at the interface of two media, also through the lens, etc. 

2. Expansion of Rays and Fronts in 
Determinate Inhomogeneous Media 

In the case of inhomogeneous, anisotropic, nonlinear 
media Huygens' approach is more difficult to implement 
and Newton's approach allows solving the problem of 
wave propagation more effectively, if we use the 
kinematic principle of Farm, according to which the 
perturbation of the medium state at the source 

( )0 0 0 0, ,M x y z  extends to any receiver point 

( )1 2 3, ,M x x x  for the minimum time ( )0 ,M Mτ , 
which is the Farm's functional [1-4] 

( ) ( )
0

0
1 2 3

,
, ,

M

M

dM M
V x x x

= ∫
τ          (1.1) 

where ( )1 2 3, ,V x x x  perturbation propagation speed 

including ( )1 2 3, ,x x x  that of inhomogeneous media, 

  – the distance along the ray.  

 

Figure 1.2.  Construction scheme of rays in the Farm's model 

For equation (1.1) are formulated direct and inverse 
tasks. 

In the direct task ( )1 2 3, ,V x x x  is set and is possible 

to build surface-isochrones ( )0 ,M M C=τ  ( C  – 
arbitrary constant), representing a family of wave fronts. 

In the inverse task of the known ( )0 ,M Mτ  is 

necessary to determine ( )1 2 3, ,V x x x , namely to 
identify the physical and mechanical characteristics of the 
media (media profile). 

Ray tube in a inhomogeneous medium is a figure 
formed by adjacent rays Fig.1.3. 
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Figure 1.3.  Ray tube 

We denote by A function that characterizes the change 
in the unit ray tube cross-sectional area of the value of 

0dσ  at the initial front to the current cross section 

0 0? ?d Ad= = ∇ ∇σ σ τ τ  – the unit vector directed 
along the ray Fig. 1.4. 

 

Figure 1.4.  The change σ  in the ray 

We calculate the integral by volume of ray tube Σt  
passing to the surface integral by the formula 

0

Σ

*

t

ndiv dv d
A A

 
= 

 
∫



∮       (1.2) 

Since on the side surface ,n⊥  то

0 0 0d A d A− =σ σ , hence, we obtain 

( )  / 0,div v A gradτ τ τ ∇ = ∇ =     (1.3) 

Considering the ratio of 

22v −= ∇τ                  (1.4) 

we obtain the equations for finding the position and shape 
of the wavefront. Equation (1.4) is called the eikonal 
equation, and the equation (1.3) determines the change in 
cross section of the tube. 

In particular, for the case of 2D rays and consistent 
positions of the front form an orthogonal curvilinear grid 

,α β  Fig. 1.5. 

 

Figure 1.5.  The case of 2D rays 

for which two kinematic equations are obtained 

1 1,A V
V A

θ θ
α β β α
∂ ∂ ∂ ∂

= = −
∂ ∂ ∂ ∂

        (1.5) 

where ( ),θ α β  – an angle which for linear 
homogeneous medium does not depend on  α , because 

0V V const= = . As A  depends linearly on α , the 
rays will be straight, and the fronts will be circles in the 
plane considered. 

The law of energy conservation in the integral form is 

Σt

j jEdv P n ds
t
∂

= −
∂ ∫ ∮           (1.6) 

Here jP  – vector components of the energy density 

P  of Poynting-Umov, E  – the total energy density. 
In the differential form of (1.6) we obtain 

0E divP
t

∂
+ =

∂
             (1.7) 

The energy flow is directed along the speed V , and 
hence along the rays. For an arbitrary ray tube of (1.7) 
follows the conservation equation 

( ) ( )*
0

P AEA
t e

∂∂
+ =

∂ ∂
         (1.8) 

where   - the distance along the ray. 
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The eikonal equation (1.4) is a non-linear differential 
equation in partial derivatives of the first order type 
Hamilton-Jacobi, which is generally written as [11-14] 

1
1

, ; 0n
n

H q q
q q
τ τ ∂ ∂

… … = ∂ ∂ 
        (1.9) 

where ( )1 nq q= …τ τ  – the desired function, iq  – 

the generalized coordinates ( )1,i n= . 

Designating i
i

p
q
∂

=
∂
τ

 as generalized impulses, the 

equation (1.9) can be written as 

( ), 0i iH p q =                 (1.10) 

Equation characteristics (1.9) satisfy the system of 
ordinary differential equations 

( )1
/ / /

i i
n

i i j ii

dq dp d
H p H q p H p

=

= − =
∂ ∂ ∂ ∂ ∂ ∂∑

τ
(1.11) 

which can be written as 

1

, ,
n

i i
j

ji i j

dq dpH H d Hp
dt p dt q dt p

τ
=

∂ ∂ ∂
= = − =
∂ ∂ ∂∑   (1.12) 

Here 2 n  component ( ) ( ),?i i i iq q t p p t= =  
which are solutions of the system (1.11) are called the 
characteristics of the equation (9). 

If =i iq x  – the Cartesian coordinates, and 

( ) ( )1 2 3, , , ,H H p r r x x x= = , the Hamiltonian 
characteristic equations (1.11) - (1.13) can be written in 
the vector form 

,dr H dp H
dt p dt r

∂ ∂
= = −
∂ ∂

         (1.13) 

,d Hp p grad
dt p
τ τ τ∂
= = = ∇

∂
      (1.14) 

Differentiation respect to the vector, means differentiation 
with respect to the appropriate coordinate, for example 

i

i

dx H
dt p

∂
=
∂

. Thus, the ray is in the coordinate space of a 

projection ( )i i iq x x t= =  of the eikonal equation 

characteristics (1.4). In the phase space { },i ip q  the 

characteristic ( ) ( )? ?i i i iq q t p p t= =  is called the ray 
equations. 

If you found the solution of equations (1.13) in the form 
of ( ) ( ),r r t p p t= = , then the solution of equation 

(1.14) can be written as 

0

0

t

t

Hp dt
p

∂
= +

∂∫τ τ            (1.15) 

There are different forms of recording the ray equations 
(1.13), depending on the kind of H , coordinate system 
selection. For example, we write H  (eikonal equation) 
as 

( )2 21 0,
2

H p n r p gradτ = − = =    (1.16) 

where n  – the refractive medium index. 
Then the equations for the rays have the form of 

dr p
dt

=                  (1.17) 

( )2 21 1  
2 2

dp n r grad n
dt

= ∇ =         (1.18) 

which shows that in an isotropic medium rays are 
orthogonal to the wave fronts. 

Most convenient to use instead of the parameter t the 
parameter of the arc lengths of the curved ray in a 
inhomogeneous medium 

ds dsdt
p n

= =             (1.19) 

then the expression for the eikonal (1.16) has the form 

( )
0

0

s

s

n r ds= + ∫τ τ            (1.20) 

If the eikonal equation (and) or H-equation of 
Hamilton-Jacobi (1.5) will be written in the form of 

( ) ( ) 2, 0,? H p r p r r p p= − = =   (1.21) 

then the rays equations (1.14) have the form 

,dr p dp n gradn
ds n dt

= = ∇ =       (1.22) 

and the expression for the eikonal (1.20). 
To this same expression for the eikonal respond 

equations for the rays, written in the form 

   , lndr d grad n grad n grad n
ds ds n n

 = = − = ⊥ 
 



   (1.23) 

where – derivative with respect to 

the ray, the operator ( )   grad grad grad⊥ = −    

determines the gradient calculation in the direction 
perpendicular to the beam (along the wave front). 

 



80 Expansion of Wave Rays and Fronts in Media with Inhomogeneous Structure  
 

According to the optical-mechanical analogy the 
system of equations (1.14) can also be written in the form 
of Newtonian mechanics for potential forces (in the form 
of second-order equations) 

2
2 2

2

1    or?  
2

d r d drgrad n n grad n
dt ds ds

 = = 
   

(1.24) 

where the role of the forces potential is played by 
( )2n r . 

The geometry of the spatial curve (ray) is characterized 
by the curvature k  and torsion  , which are 
calculated according to the formulas 

     grad n grad n grad nk
n n n

    = = =        
  

 
(1.25) 

where 0
2

< <
πθ  – the angle between the ray (vector 

sin θ ) and vector  grad n . 

The radius of the ray curvature 1k −=ρ . As in a 
homogeneous medium n const= , then 0k = , ie rays 
are straight lines. 

The torsion is calculated according to the formula 

( )1        
2

n rot n b rot b= +       (1.26) 

where n  – the unit vector the main normal, 

*b n =    the binormal unit vector in the Frenet 

trihedron, moving along the ray. 
The expressions for n  and b  can be represented by 

the index of refraction ( )n r  according to the formulas 

1 1ln , gradnn grad n b
k k n⊥

 = =   
    (1.27) 

Then 

( )

( )

1   * ln

1 ln

grad b grad n
k

grad grad n b
k

⊥

⊥

 = = 

 = + 






 

For planar curves 0= , for example in layered 
media. 

Discussed equations correspond to coordinate method 
of setting a motion in mechanics. Natural way to set a 
motion in mechanics corresponds to the consideration of 
the kinematics of the rays in the ray coordinates, related 
to the initial position of the wave front [4, 7, 15]. 

On the surface of the radiating body  curvilinear 
coordinates can be introduced ,ξ η  Fig. 1.6. 

 

Figure 1.6.  The ray coordinates 

so that 

( ) ( )0 0 0 ,r r t r= = ξ η      (1.28) 

The coordinate lines ,ξ η  are orthogonal and they are 
chosen, as a rule, from geodesic lines or lines of the 
principal curvatures, coordinate line s – ray, tangent to 
which at ,ξ η  is orthogonal to the front 0

tS . Coordinate 

system , , sξ η  is called as ray coordinate system.  

At 0t t=  you must set a condition for 

( ) ( )0 0 ,p p t p= = ξ η . The vector components 

( ),p ξ η  satisfy the equations, which follow from the 
eikonal equation. 

( ) ( )
020 2 0

0

0
0 00 0 0

, ,
ξ

,
ξ ξ η η

rp n r p

r rp pτ τ

∂
=

∂

∂ ∂ ∂∂
= =

∂ ∂ ∂ ∂

  (1.29) 

If the initial emitting surface is plane, then the 
coordinate system is a Cartesian system, and is connected 
with the surface 0

3 0x = . Then assuming that 
0 0
1 2,x x= =ξ η , we obtain 

( )

0 0 00 0

2 2
2 0 0

0

, ,x y zp p p

n r

τ τ
ξ η

τ τ
ξ η

∂ ∂
= = =
∂ ∂

   ∂ ∂
= − −   ∂ ∂   

   (1.30) 

The equation of the initial surface can be written as 

( ), , 1, 2; 1,2,3i ix x u t iα α= = =    (1.31) 

We introduce the first and second quadratic form of the 
surface 0

tS  
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* , *i i i i
i ig x x b x xαβ α β αβ

α β αβυ υ= = − =
 

(1.32) 

Then the differential equations for the rays have the 
form [4, 7, 10] 

,
i i

i ix xc c
t t

δ δυ υ
δ δ

= =         (1.33) 

i
i i i

i
xg x g x c

t t
= − = −

α
αβ αβ

β β α
δδυ υ

δ δ
   (1.34) 

To close the system (1.31), (1.32) it must be 
supplemented by equations for the mean and Gaussian 
curvatures of the surface. 

In the particular case when the wave front propagates 
parallel to itself expressions for the mean and Gaussian 
curvatures have the form 

0 0
2

0 0

ΩΩ
1 2 Ω

sK
s s K
−

=
− +

0
2

0 01 2
KK

s K sK
=

+ −
(1.35) 

The expression for the eikonal in the coordinates 
, , tξ η  is written in the form 

( ) ( ) ( )
0

2
0, , , , ,

t

t

t n r t dt = +  ∫τ ξ η τ ξ η ξ η  (1.36) 

Coordinates ,ξ η  on the surface 0τ  identify a ray 

coming from the surface at the moment 0t t= . For 

different ,ξ η  we obtain a family of rays, therefore, at 

the initial time from the surface 0τ  comes the bundle of 
rays, that allows you to build a complex radiation pattern, 
on the basis of which is determined the wave field 
structure in the physical space. 

In the phase space { },p r  the phase portrait under 
certain conditions, can also be quite complicated. 

In the spatial of generalized coordinates iq , which 
are not related to the wave surface and which are 
orthogonal curvilinear coordinates, eikonal can be written 
as 

( ) ( ) ( )
23

2
2

1

1,
2 h

j
i i i

i j i

p
H p q n q

q=

  = − 
  

∑   (1.37) 

where ( )h j iq  – Lame coefficients for curvilinear 
coordinates iq . 

The system of equations for the rays in this case has the 
form 

3
2

2 2
1

1 1, ji i
i j

ji i j i

hdq dp np n p
dt h dt q h q=

∂∂
= = +

∂ ∂∑  (1.38) 

The expression for the eikonal is written as 

( )
0

2 2 2
0 ,n r t dt p n

τ

τ

τ τ  = + = ∫      (1.39) 

If you enter a pulse components in curvilinear 
coordinates according to the formulas 

1 , 1,
h

ˆ i
i

i i i

Pp i n
h q

τ∂
= = =

∂
        (1.40) 

then the equations (1.36) are written as 
31 ˆˆ ˆ ˆ1 j ji i

j i
j ii i i j i

p hdp hnn p p
dt h q h h q qj≠

∂ ∂∂
= + − ∂ ∂ ∂ 

∑  (1.41) 

In many specific problems of ray propagation in 
inhomogeneous media is convenient to use angular 
variables, for example, in the case of the spherical 
symmetry. Assuming that 1 2 3, ,q r q q= = =θ ϕ  and 
considering that in this case 

1 2 3h 1,h ,h sinr r θ= == , equations (1.39) can be 
written as 

2 2
0

1, , ,
si
ˆ

ˆ ˆ
n

1 1ˆ ˆ ˆ

r

r

pdr d dp p
dt dt r dt r
dp nn p p
dt r r r

ϕ
θ

ϕ

θ ϕ
ϕ

= = =

∂
= + +

∂

       

21ˆ ˆ ˆ  *ˆ r
dp nn p p ctg j p
dt r

θ
θ ϕθ

θ
∂ = − + ∂ 

 (1.42) 

ˆ
ˆ1 sin cos *

sin
ˆ ˆ ˆr

dp nn p p p p
dt r

ϕ
θ θ ϕθ θ

θ ϕ
 ∂

= − − ∂ 
 

Here  

The eikonal equation is written as 
22 2

21 1
sin

n
r r r
τ τ τ

θ ϕ ϕ
 ∂ ∂ ∂   + + =    ∂ ∂ ∂     

 (1.43) 

Or 
2 2 2 2ˆ ˆ ˆrp p p nθ ϕ+ + =             (1.44) 

In the case of a plane task 2D- dimension, entering 
angle α  by relations 

coˆ srp n= α  

sˆ inp n=θ α              (1.45) 

we write the equations for the ray in the form of 

( )1 1    , 2
rnd d n dtg

dr r dr nr r r dr
θ α θ πα α

 ∂∂
= = − = ∂ ∂ 

(1.46) 
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Thus, depending on the geometry and mechanics of the 
particular task you can choose a suitable system of 
coordinates and shape of the ray equations. The most 
commonly used are phase coordinates ( ),r p  and radial 

coordinates ( ), , sξ η  so that the solution of the radial 
equation is represented as 

( ) ( ), , , , ,r r t p p tξ η ξ η= =        (1.47) 

Here, the parameter t  It related to the distance s  
along the ray (coordinate line), and ,ξ η  identify the ray 

on the initial surface . If the wave is emitted 
by a limited surface area, defined by the relation 

( )0 0 ,r r= ξ η , then the rays form a family of rays 
emanating from this area. 

The conversion from the Cartesian coordinate 
system to the ray system is defined by Jacobian 

( )
( )
1 2 3, ,

, ,
x x x

D
t

∂
=

∂ ξ η
 and will be one to one, if D 0≠ . 

A lot of wavefronts obtained in accordance with the 
principle of Huygens (contact transformations) form a 
family of equal phase surfaces, eikonal for each of them is 
written in the form 

( ) ( ) ( )
0

0 2
0, , , , ,

t

t

t n r t dt const = + = = ∫τ ξ η τ ξ η ξ η τ (1.48) 

From the first equation (1.48) for each 0τ  can be 

found ( ), ,фt t t= ξ η  and it is inserted into the second, 
then the family of wave fronts of equal phase (phase 
fronts) is determined by the ratio 

( ) ( )0 0, , , , , ,ф фr r t r = = ξ η ξ η τ ξ η τ   (1.49) 

The family of rays emitted by the limited surface area 
0
tS  forms the bundle of rays. This means that the rays 

propagate not independent of each other, but they interfere. 
Due to the interference of secondary waves a significant 
contribution to the building of the fronts contribute only 
those rays, for which the phase difference does not differ 
by more than / 2λ  (λ  – wavelength). 

Surfaces, where condition ( )| 0
K Kt SD =  is violated 

are referred to as caustic 

( ) ( )| 0at
K K kt SD r r t=            (1.50) 

The position of caustics is defined from the equation of 
the family of rays ( ), ,r r t= ξ η  and condition 

( ) 0D t =  

( ) ( ), , , , , , 0r r t D tξ η ξ η= =       (1.51) 

Excluding t  we obtain 

( )( ) ( ), , , ,kr r t r= =ξ η ξ η ξ η      (1.52) 

where ( ),kr ξ η  determines the equation of the caustic 
in curvilinear coordinates of the initial surface. In solving 
problems for caustics it is convenient to introduce on the 
caustic surface own caustic coordinates ( ), ,α β δ , 

where, ,α β  are curvilinear coordinates located on the 
caustic, and δ  is measured along the line characterizing 
the removing from the caustic. 

The value J  Excluding t  we obtain 

( )
( )

( )
( )

0

, ,

0 , ,

* *

* *
t t

r r pD t
J

D t r r p
ξ η

ξ η =

  = =
  

 

, , ,, , t
r r rr r r p

tξ ηξ η
∂ ∂ ∂

= = = =
∂ ∂ ∂

    (1.53) 

is called the divergence of rays. 
From (1.51) follows that on the caustic 0J = , ie 

cross-section of the ray tube decreases, energy increases, 
the rays touch caustics and change the direction. The 
classification of caustics is considered in the catastrophe 
theory [16]. On caustics and in their neighborhood 
classical spatial ray solutions are not applicable. There are 
methods for caustic rays, allowing to solve a number of 
tasks for caustics [2]. 

3. Determinate Chaos of Rays and 
Fronts in Inhomogeneous Media 
with Deterministic Structure 

The equations describing the propagation of rays in 
inhomogeneous media are nonlinear because the refractive 
index ( )n r

 
dependence on the spatial coordinates. The 

consequence is the possibility of deterministic chaos in the 
radiation pattern, when for a determinate particular 
dependence ( )n r  is obtained not a concrete realization 
of the trajectory of the ray, but a set of possible 
trajectories, in the same way as is the case for random 
functions. The optical-mechanical analogy allows us to 
consider this problem with the most common positions 
within the Hamiltonian mechanics. Issues of construction 
of ray trajectories for different types of the determinate 
inhomogeneity are subject to numerous studies especially 
for 2D layered models. Significantly less works are 
devoted to the chaotization of ray trajectories in 
determinate inhomogeneous media [11-14]. 

First the possibility of deterministic chaos in 
inhomogeneous media has been considered in [13]. 

As is well known, the Poynting-Umov vector of energy 
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density is directed along the trajectory of the ray along the 
tangent and thus chaos in the flows of energy and 
information in inhomogeneous media greatly complicates 
the prediction of information and energy processes. 

In accordance with the optical-mechanical analogy of 
differential equations for the ray trajectories in 
inhomogeneous media are derived from Fermat's principle 
[1-4]. 

( )
0

M

M

n r dsτ = ∫             (2.1) 

and in the Cartesian coordinate system can be written a 

( ) ( )  ,dr d drn r r grad
ds ds ds

τ τ = = ∇ = 
 

  (2.2) 

The wave surface is determined by the eikonal equation 

( )d n r
ds
τ
=               (2.3) 

where ( )1 2 3, , ,?r r x x x s=  – the distance along the ray 
trajectory. 

The equation (2.2) can be written in the Hamiltonian 
form, if we assume that the Hamiltonian H  has the 
form of 

2 2H n p= − −              (2.4) 

where ( ) 2 2 2
1 2 3 1 2 3, , ,p p p p p p p p p= = = + + . 

Then, dividing the spatial coordinates ( )1 2 3, ,x x x r= , 

for example, 1 2,x x  we take as coordinates on a locally 

plane wave, and 3x  directed along the straight ray 

orthogonal to the plane 1 20 ,x x  Fig. 2.1. 

 

Figure 2.1.  The spatial coordinates on a locale plane wave at the time 
0t = at the moment t  

Then imagine ( ) ( ) ( )1 2 3 3 1 2, , , , ,r x x x x x xρ ρ= = = , 

where ρ a function of is 3x  and determines the 

coordinates of the ray point in the tangent plane of the 
wave front. 

Impulse p  is introduced by the relation 
˙

˙

2
3

,
1
n p dpp p

dxp
= =

−
         (2.5) 

Taking into account (2.4), (2.5) the Hamiltonian form 
of the equations for the ray has the form of 

3 3

,dp H dp H
dx p dx p

∂ ∂
= − =

∂ ∂
       (2.6) 

The waveguide in a inhomogeneous medium is a 
linearly extended volume, where takes place a determinate 
expressed change of the refractive index from its 
boundaries to the axis in such way, that rays falling or 
occurring therein are propagating along its axis in general 
experiencing fluctuations near the waveguide axis, 
waveguide may be inhomogeneous along the waveguide. 

The axis of the waveguide 3Ox  is the perpendicular to 

the plane 2,Ox x  and an attractor for ray trajectories, if 

the change n  along 1 2,x x  has the character of 

monotonic increase with a maximum on the axis 3Ox  
Fig. 2.2. 

 

Figure 2.2.  The dependence ( )n ρ  in a cross-section of the 
waveguide 

In this case rays emitted in the waveguide parallel to the 
axis 3Ox  and rays, entering into the waveguide at some 

angles oscillate near axis 3x . The ray acts like a ball, 
received an initial impulse moving along the ideal 
(frictionless) chute along the axis 3x  (in the plane 

2,Ox x  is a potential well). 
Accounting for the presence of a certain type of 

inhomogeneity along the axis 3Ox  may result in a 
deterministic chaos in radiation pattern. 

We represent the refractive index 

( )2 2 2
3 1 2,n x x x= +ρ ρ  as 
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( ) ( ) ( )2 2
3 3  , ,n x n xρ ρ ρ= +         (2.7) 

Here ( )2n ρ  determines the refractive index in the 

waveguide excluding inhomogeneity in the direction 3x , 

and ( )3, xρ  takes into account the presence of 

inhomogeneity along the waveguide 3, 1x ε  – a 
small dimensionless parameter. 

In accordance with the representation (2.7) we can, 
using classical perturbation theory to write down [1-4, 
11-14] 

( ) ( )0 1 3  , , ,H H p H p xρ ε ρ= +      (2.8) 

where the summands 0 1,H H  have the form of 

( ) ( )
2 2

0 ,H p n pρρ = − −          (2.9) 

( ) ( ) 1
1 3 3 0, , ,H p x x Hρ ρ −=         (2.10) 

The wave nature of propagation of the rays takes place 
in the ocean acoustics, geophysics, where the free surface 
of the Earth has waveguide properties and that provides 
further propagation of surface waves, in optics, in 
particular, the propagation of light through fiber optic 
wires. 

We assume that the quasi-cylindrical waveguide has a 
axially symmetrical nature of the change of the refractive 
index ( )n ρ , then at any section of  the waveguide 

along the axis 3Ox  the ray pattern will be the same, so 
for simplicity we consider the case of 2D, when 
( ) ( )1n n x=ρ . 

Equations (2.8) - (2.10) and therefore (2.6) have the 
form of 

( )0 1 1 3, ,H H H x p xε= +        (2.11) 

( )2 2
0 1H n x p= − −          (2.12) 

( ) 1
1 1 3 0,H x x H −=             (2.13) 

1
1

3 1 3

  , ,dxdp H H p p
dx x dx p

∂ ∂
= − = =

∂ ∂
    (2.14) 

In the phase plane 1 1,x p  phase trajectories of the ray 
have the form corresponding to the center 

 

Figure 2.3.  Phase trajectories of the rays in the waveguide 

We proceed to the action-angle variables ( ),I θ  

( )1
1 1

,1 , ?
2

S x I
I p dx

I
θ

π
∂

= =
∂∫      (2. 15) 

( ) ( )
1

2 2
1 1 1

0

, , ?
x

S x I pdx p n x E= = −∫
  

(2.16) 

which are associated with the wave front energy E  along 
the ray by relation 

( ) ( ) ,dE I
I t

dI
ω θ ω ϕ= = +       (2.17) 

where ( )Iω  – frequency. 
Writing the Hamiltonian and equations ray trajectories 

in variables ,I θ , we obtain 

( ) ( ) ( )3 0 1 3, , , ,H I x H I H I xθ ε θ= +    (2.18) 

( )
˙

1 1  ,H HI I
I

ε θ ω ε
θ

∂ ∂
= − = +

∂ ∂
       (2.19) 

Equations (2.18) and (2.19) describe nonlinear 
oscillations of the ray that causes anisotropy of its 
oscillations, i.e. the frequency of the ray oscillation near the 
axis of the waveguide depends on its energy. 
Parameter α , defined by the formula 

( )

2
0 0

22  * 2 /H HI d
dI I I
ωα

ω
∂ ∂

= =
∂ ∂

       (2.20) 

characterizes the degree of system nonlinearity. 
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Presenting the disturbance 1H  in the form of a double 
Fourier series 

( )
( ) ( ) ( )
1

Ω
1 3

,

  , ,
2

i m nmn

m n

H I
H I x e θθ +=∑    (2.21) 

The condition for the occurrence of nonlinear resonance 
in the ray vibrations can be written as 

  Ω 0,?  Ωm nω σ+ ≈ =          (2.22) 

where Ω / 2T= π  – frequency, and T  – the period of 
disturbances of nonuniformity along the axis of the 
waveguide 3x , σ  – phase of vibrations' disturbances. 

The closeness of the relation (2.22) to zero depends on 
the width of the resonance. 

For a single resonance , 1( Ω)m n ω= ± ≈  sum in 
(2.21) has two real summands: with the argument −σ θ  
(resonance summand) and with the argument with the 
argument +σ θ  (high-frequency disturbance). As is 
known, if the localized resonances are far enough from 
each other, then leaving in (2.21) only the resonant 
summand we obtain 

( )11  sin
2 mn mnI Hε ψ=          (2.23) 

( ) ( )1
,

1  Ω cos
2mn mn I mnm n I nHψ ω ε ψ= + + (2.24) 

where mn m n= +ψ σ θ  – resonance phase, comma 

denotes differentiation with respect to the action I . 
In the case of moderate nonlinearity characterized with 

the parameter 1−
 ε α ε , difference pI I I∆ = −  

is small ( )pI I∆  , where pI  – then the value of I  

in which we have the exactly relation (2.22) 

( )Ω 0pm n I+ =ω . 

Equations (2.23) correspond to the Hamiltonian 

( ) ( ) ( )
2

1
, ,  cos ;?

2 |A I mn p mn I
p

I dH m nH I
dI I I

ωω ε ψ ω
∆

= + =
=

(2.25) 

From (2.24) we obtain the maximum width of the 
nonlinear resonance 

( ) ( )11
,4 ( )I mnI H−∆ = ε ω

 

( ) ( )( ) ( )1 1
, ,4 4 ΩI I mn mnI H n−∆ = ∆ = =ω ω εω (2.26) 

where Ωmn  – the frequency of small phase oscillations. 
The condition of moderate nonlinearity α  means 

little value changes andI ω  

( )
( ) 1/21/2 1

1/2,? ,? 4 mnHI C C c
I I

ε ω εα
α ω ω

 ∆ ∆ = = =            

(2.27) 

or approximately 

( )
1/2

1/2  ~ , ~I
I

ε ω εα
α ω

∆ ∆ 
 
 

      (2.28) 

Due to the nonlinearity, fluctuations are nonisochronism, 
frequency depends on the amplitude. As a result of the 
changes in the amplitude of oscillations at a resonance 
frequency change and leaving its resonance value occur, 
there is termination of amplitude changes, causing the 
return of the oscillation frequency to a resonant value. This 
process is repeated, i.e. nonlinearity stabilizes isolated 
resonance, making the amount of change to be limited 

I∆ . 
For the moderate nonlinearity ~ 1α  the 

decomposition is carried out by 1/2ε , indicating 
according to (2.28), that in the case of resonance 

1/2~I∆ ε , i.e. more than in a non-resonance case. 
The condition of stabilization of nonlinear resonances 

has the form of 
( ) ( )1

, ormn InH nε ω≤ ∆  

( )11 1 2
, ,  16 ( )mn I mn IH I Hεα ω− − −≤     (2.29) 

Consider now the case when the resonances strongly 
interact with each other, the consequence of which is a 
stochastic instability of the ray oscillations. Resonances 
connection coefficient is introduced by the formula 

( ) 1 s ω −= ∆ ∆               (2.30) 

where ( )∆ω  is defined by the formula (2.27) and 

represents the width of the resonance, 1i i+∆ = −ω ω  – 
the distance from this resonance to the nearest 
neighboring resonance. 

At 1s  we obtain an isolated resonance case, at 
1s  resonances overlap, resulting in greatly irregular 

movement. Value ~ 1s  is the boundary of stochasticity 
or the criterion of instability. 

For an arbitrary determinate periodic perturbation 1H  
in the phase space of the neighborhood of the separatrix 
forms a layer, where ray trajectories are behaving 
chaotically. The width of the layer is determined by the 
specific form of a periodic perturbation. 

Let disturbance have the form of 

( ) ( ) ( )1 1 3  , ,
K

H I TH x kTθ σ θ δ= −∑
 

 (2.31) 

Using the canonical transformation ,I I θ θ→ →   
we write the equations of motion in the form 
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( )1
0  HI I T I I fε ε θ

θ
∂

= − = −
∂

    

( )
˙

  T Iθ θ ω= +              (2.32) 

where ( ) ~ 1f θ  – dimensionless phase function, 0I  – 
constantly acting. 

The transformation (2.32) describes the motion of the 
ray between the "points" of the inhomogeneity along the 
axis 3x  on the length interval T . At 0T → , 

1 0H∂
=

∂θ
 and then we obtain the canonical equations 

(2.6). 
If the perturbation has one harmonic ( ) sinf =θ θ , 

the resonance condition is written as: 2T m=ω π , 
where m  – whole number. 

The system of resonances corresponds to the Fourier 
series expansion of the periodic δ - function 

( ) 3Ω
3

1  im x

K m

x kT e
T

δ
∞

=−∞

− =∑ ∑        (2.33) 

where the distance between resonances is: 
( )

1

1
0Δ 2 / Ω,    2 /mT аH I T= = =π . 

Let the variables ,I σ  of the ray trajectory in 
action-angle variables satisfy equations of the form 

( ) ( )3 1 3  sin , ,
k

I I x kT H I xε δ σ ε σ
∞

=−∞

= − =∑  

( )I=σ ω                 (2.34) 

The condition of conservation of phase volume has the 
form of [16, 17] 

( )1
3

   0f f H f
x I

ω ε
σ

∂ ∂ ∂
+ + =

∂ ∂ ∂
      (2.35) 

Then laying out 1 and f H  in the Fourier series 

( ) ( )3 3 ,  , , , 1in
n

h

f I x f I x e nσσ
∞

=−∞

= = ±∑    (2.36) 

( ) ( ) ( ) ( )3Ω1
1 3

,

, , ,Ω 2 /i n k x
nk

h k

H I x H I e Tσσ π
∞

+

=−∞

= =∑  

and substituting (2.36) into (2.35), we obtain 

( ) 31 Ω

,3

  * ik xn
n sk n s

s k

f in f H f e
x I

ω ε −

∂ ∂
+ = −

∂ ∂ ∑  (2.37) 

Consider the estimate of the probability of occurrence of 
deterministic chaos in radiation pattern. Imagine a 

discretization along the axis 3x  in the form of 

( )3 1x NT N=  , then the equation (2.34) can be 
written as 

1  sinm m m mI I Iε σ+ = +            (2.38) 

( )
1 sin ,?

Ω
mm

m m m m m
m

d IIT K K
dI+ ≈ + + =
ωεσ σ ω σ  

The correlation function of the phase has the form of 

( ) ( )0

2

3 0
0

1 
2

Ni
NR x R d e

π
σ σσ

π
−= = ∫    (2.39) 

At ( ) 3 3ln Ω iω
31, ~ K x xK R x e − +

 . 
It is believed ergodicity conditions are met. 
We introduce the distribution function 

( )
2

1
0 0 0

0

2 ,F f d f
π

π σ−= ∫  – density. 

At 1K   the function F  satisfies the diffusion 
equation 

( ) ( ) ( )1 12

,3

  2 Ω  nk nk
n k

F H n k H F
x I I

πε δ ω∂ ∂ ∂
= −

∂ ∂ ∂∑ (2.40) 

where 3x T . 
In this case the equation (2.40) describes ray diffusion 

(deterministic chaos) 
At 1K   averaging over 0σ  gives an estimate 

( ) ( ) ( )1 12

,3

  2 Ω  nk nk
n k

F H n k H F
x I I

πε δ ω∂ ∂ ∂
= −

∂ ∂ ∂∑  (2.41) 

which shows that no randomization occurs, because 
correlation between points of the ray does not decrease. 

Coefficient ( )K θ  has the form of 

( ) ( )0
, 0 ,0  1 I

dK I Tf
d
θθ εω
θ

= − = −


    (2.42) 

with ( ) 2~K sθ . 

Stochastization of rays at 1K  , characterized by the 
correlation function (2.39) is similar to processes such as 
pitching of the ship, movements of various gyroscopic 
systems, in electrical circuits of the simplest form under 
the influence of periodic actions. 

As is well known, in irregular fiber waveguides of the 
gradient, refractive type, underwater, underground 
acoustic waveguides are possible phenomenon of rays' 
swing, swinging of the waveguide channel width, "rashes" 
of rays from the waveguide [2]. 

In [11] it was found a decrease in the effective cross 
waveguide size and flashing rays from it. 
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4. Expansion of Rays and Fronts in 
Stochastically Inhomogeneous Media 

Models of randomly inhomogeneous media allow to 
take into account the fact, that in real-world environments, 
in principle, it is impossible to determine (measure) 
accurately, to know the material physical and mechanical 
properties (coefficients) of the medium in sutu, because 
there is always the effect of artifacts related to 
measurements. Due to this experimental data always have a 
dispersion (scatter) in each point of the medium, i.e. can be 
modeled as a random field of physical media factors. 
Accordingly, rays and fronts will represent random 
trajectories and surfaces [16]. 

The equations for the rays and the eikonal in general 
case of an arbitrary dependence of the refractive index on 
the spatial coordinates cannot be solved analytically in the 
general case. 

The most widely used is the method of successive 
approximations (a small parameter). According to the 
method analytical approximations for the coordinates ray 
and the eikonal sequentially are found, and then calculated 
numerically. 

Imagine the square of the refractive index in the form of 

( ) ( ) ( ) ( ) ( ) ( )2 2  orn r n r r r r rε ε= + = +   

( ) ( )with max r r ε           (3.1) 

In the submission (3.1) ( ) ( )2r n r=ε  – 
unrecovered value of the refractive index, or the average 
( )r  – the fluctuation of the refractive index which 

takes into account the inhomogeneity of media. 
Accordingly, submission (3.1) of an expression for the 

coordinates of the ray, the eikonal in a inhomogeneous 
medium are represented in the Cartesian coordinate 
system in the form of 

( ) ( )
0

k
K

r t r t
∞

=

= ∑            (3.2) 

 ( ) ( )
0

k
K

r r
∞

=

= ∑τ τ            (3.3) 

where ( ) ( )0 0,?r t rτ  – unperturbed (middle) trajectories 

of the ray and the eikonal, and ( ) ( )( ),?K Kr t r k ≥τ  
give the corrections arising from the inhomogeneity. 

Substituting (3.2) into equations (1.24), we obtain a 
recurrent system of ordinary differential equations 

( )
¨

0 0
1
2

r r= ∇ε                (3.4) 

( ) ( )
¨

0
1 , 1, 2
2

n n nr r r F nε= ∇ ∇ + = …       (3.5) 

where nF  depend only on prior approximations i.e. they 
are known functions. 

Substituting (3.3) into equation (1.4), we obtain a 
recurrent system of differential equations in partial 
derivatives of the first order to find the corrections to the 
eikonal 

( ) ( )2 r∇ =τ ε               (3.6) 

( ) ( )0 12 , r∇ ∇ =τ τ             (3.7) 

 ( ) ( )2
0 1 ,2 , 2,n n nτ τ τ −∇ ∇ = − ∇ = … (3.8) 

Consider two cases: 1. The medium is 
quasihomogeneous, then const=ε  and the rays will 
be in average straight 

( ) ( ) ( ) ( )
0

o o or t r p t tτ τ ε= + = +     (3.9) 

( ) ( )0 1 1
1 1 1 1p r p F t dt= = + ∫      (3.10) 

( ) ( ) ( ) ( )

( ) ( ) ( )

1

0 0 01 2 2
1 1 1 1 1

0 0

0 1 1 1
1 1

0

t t

t

r r tp dt F t dt r

tp t t F dtτ

= + + =

+ + −

+∫ ∫

∫
  (3.11) 

Here the initial values ( ) ( )0
1,or p  are selected at the 

initial wave surface. Assuming that 
( ) ( ) ( ) ( )0 0 0 0

0 10, 0, / 2 Nt r p N p= = =  , ( N  – normal 

to the primary surface ( )0,Q   refractive index at Q , 
( )0
Np  – normal ray exit speed on Q ), we obtain  the 

trajectory of the ray in parametric form. 
If within the first approximation in the solution found 

( ) ( ) ( )0 1, , , ,r t r s r s= +ξ η ξ η     (3.12) 

To go to the ray coordinates , , sξ η , then the inverse 
task is formulated: along the ray at the observation point 
to restore the coordinates of the ray in the point of 
emission ( ), , sξ η . In the zero-order approximation a 
ray is straight, the task is correct, taking into account the 
fluctuations of the inhomogeneity the system of equations 
(3.12) may have several roots, which corresponds to the 
arrival to the observation point a few rays, i.e. the 
presence of caustics in the rays' arrival point. 

Consider the account of the eikonal corrections due to 
the refractive index fluctuations in two cases with and 
without taking into account the lateral displacement of the 
ray. 

In the first case, considering that the solution of 
equation (3.7) for the unperturbed eikonal is unknown. 
Then, taking into account 0 0 /p dr dt∇ = =τ , the 
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equation (3.7) can be written as 

( ) 1
02 2x

d
dt

∇ ∇ = =
ττ τ υ          (3.13) 

Integrating (3.13) along the unperturbed ray we write 

0 0

1
1

1 1
2 2

t s

t s

dt dsυτ υ
ε

= =∫ ∫        (3.14) 

Accordingly, from (1.8) it can be obtained at 2n =  

0 0

2
2 1 1

2 1
( )1 1( )

2 2

t s

t s

dt dsττ τ
ε

∇
= − ∇ = −∫ ∫   (3.15) 

These corrections are applicable, if the displacement 
corrections of the perturbed from the unperturbed ray are 
small compared with the characteristic cross-sectional 
dimension of the perturbation ⊥ . 

Consider the account of the transverse ray displacement, 
which is determined by the solution of equation (3.5). The 
solution of equation (3.6) in this case has the form 

( )
( ) ( )
( ) ( )0

1 1
0 10

11 1
0 1

t

t

r t r t
dt

r t r t

ε
τ τ

υ

  + +   = +  
 +   

∫     (3.16) 

As follows from (3.16) an approximation to (3.14) is 
obtained from (3.16) by neglecting the transverse 
displacements 1r . This corresponds to the condition 

1r ⊥  . 
In case the medium is not quasi-homogeneous 
( )n r const≠ , the method of variation of arbitrary 

constants is applied which we use in mechanics to solve 
equations with variable coefficients [1]. Solution of the 
equations (1.5) at 1k = , is represented as 

( ) ( ) ( ) ( ) ( )6 6
0

1
1 1

k k k
k k k

r t
r t c t t c t

= =

∂
= =

∂∑ ∑ρ
α

  (3.17) 

where ( )kc t  are coefficients that are required to 

determine, ( )k tρ  – the fundamental solutions of the 
system of uniform linear equations. 

( ) ( )
¨

0
1 , 1,6
2

k kr r kρ ε= ∇ ∇ =     (3.18) 

The equation of the trajectory for a particular ray 
( )0r t  depends on the 6 initial conditions 

( ) ( ) ( )
( ) ( ) ( )

0
0 0

0 0

0 , 1, 2,3 ;

0 , 4,5,6
k

o
k

r r k

k

α

ρ ρ α

= = =

= = =
   (3.19) 

and the vector components ρ  are determined by the 
formulas 

( ) ( )0 /k kt r t= ∂ ∂ρ α           (3.20) 

( ) ( )
6

1

0k k
k

c t t
=

=∑ ρ  

( ) ( ) ( )
6 ˙

1 0
1

1
2kk

k

c t t F r
=

= = ∇∑ ρ υ   (3.21) 

The solution of the system (3.21) is written as 

( ) ( ) ( ) ( )
3

1 1 1
1

1 0

0
t

k k kj j
j

с t с Q t F t dt
=

= +∑∫   (3.22) 

where ( )0kс  are found from the initial conditions. 
Substituting (3.22) in (3.17) we obtain expressions for 

ray correction in inhomogeneous media. 

Consider the vector 
˙

p r= , which can be represented 
as a series of 

( ) ( ) ( )
˙

0 0
kk

k k

p t p t r t
∞ ∞

= =

= =∑ ∑       (3.23) 

From (3.17) with regard to the first system in (3.21) it is 
obtained 

6 6 ˙

1
1 1

k k k k
k k

dp c p c p
dt = =

= =∑ ∑       (3.24) 

Through 1p  correction 1  is calculated the 

unperturbed unit vector 0  – tangent to the undisturbed 

ray 0r  

( )( )1 0 0 1
1

p p p⊥
−

= =
 



ε ε
      (3.25) 

Vector 1  characterizes the deflection angles of the 
perturbed ray from the unperturbed ray. 

Use of the method of successive approximations (small 
parameter) is based on the presence of small parameters in 
the task about the wave propagation in a inhomogeneous 
medium: 1) the wavelength is much smaller than the scale 
of inhomogeneity changes (asymptotic behavior of the 
short waves - ray theory); 2) the maximum amplitude 
fluctuations of physical and mechanical parameters of the 
medium from their average values are small (weakly 
inhomogeneous media). 
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We consider some of the effects of ray propagation in 
randomly inhomogeneous media within these 
approximations. 

Then in the representation (3.1) the index of refraction 
( )n r  is a random function of the spatial coordinates 

(random field), which is described by its moments or 
probability distribution. Since in this case, the coordinate 
points of the trajectories of rays and eikonals will be 
random functions, then they are also described by the 
moments or probability distribution. We consider the 
momentary way of describing random functions within 
the correlation approximation, if n σ ε , where nσ  is 
the mean square deviation of the refractive index, ε  is 
the mean square value of the refractive index. The average 
value and the correlation function of the refractive index 

( ) ( ) ( )1 2 1 2,nR r r r r=    are considered to be given. 
It is required to find the coordinates of points of the 
average ray trajectory, the average deviation of rays from 
the average the trajectory. 

In the case where the initial emitting surface is plane 
and the initial emitted wave is plane too, will take the 
Cartesian coordinate system at the initial plane 0

tS  as 
shown in Figure 3.1 

 

Figure 3.1.  The initial emitting surface is plane 

Axis 3x  is a straight ray in an inhomogeneous 
medium (trajectory of the middle ray in inhomogeneous 
medium). 

Then, the average value of the eikonal 0 3x=τ ε , 
and the first approximation is equal to 

( )
3

1 1
1 1 2 3 3

0

1 , ,
2

x

x x x dx= ∫τ
ε
     (3.26) 

Considering that 

n σ ε              (3.27) 

the second-order approximation can be neglected. 
The correlation function Rτ  of the eikonal τ  has 

the form 

( )
( )

( )3
1 2 2

0

, ,
2

min
n

xR r r R d
∞

= ∫τ ρ ξ ξ
ε

  (3.28) 

Here ( )3 1 2 3, ,? minr x x= = −ρ ρ ρ ρ  the minimum 

value of the quantities 1 2
3 3, .x x . 

In the case of isotropic fluctuations of the refractive 
index is obtained a linear dependence on the distance 
along the middle ray. 

( )
( ) ( )2 23

1 2 2
0

,
2

min
n

xR r r R d
∞

= +∫τ ρ ξ ξ
ε

 (3.29) 

The correlation function Rτ  of the eikonal is 

expressed through the spatial spectrum ( )nФ   of 

fluctuations ( )n r  according to the formula 

( ) ( ) ( )2
1 2 3 0

0

, min nR r r x Ф J d
∞

= ∫τ π ρ    (3.30) 

The dispersion of the eikonal, which is obtained from 
(3.30) at 1 2

3 3 30, ,x x xρ = =  increases linearly with 

increasing of distance along 3x  

( ) ( )
( )

( )

( )
( )

2 3
3 3 2

0

2
3

2
0

=
2

2

n

n

xD x x R d

x Ф d

τ τσ ξ ξ
ε

π

ε

∞

∞

= =

=

∫

∫   
(3.31) 

Designating the effective integral correlations radius 

( )
0

0,ef nK d
∞

= ∫ ξ ξ , we represent (3.31) as 

( )
( )

( )

( )

2 23
3 2

0

23
2

0, =
2

2

n n

n ef

xx K d

x

τσ σ ξ ξ
ε

σ
ε

∞

=

=

∫



    (3.32) 

If ( )nR ρ  has a Gaussian shape 

( )
2 2/22 ef

n nR e−= ρρ σ     (3.33) 

Then / 2ef n= π  ( n  – correlation radius of 

n ), and the dispersion of the eikonal depends linearly on 

3x  
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( )
( )

2
2

3 32
2 2

n nx x=


τ
πσσ

ε
       (3.34) 

The spatial correlation can be represented as an 
expansion in the longitudinal and transverse correlation. 

The longitudinal correlation ( )
IIR τ  of the eikonal is 

calculated when the points 1 2an d r r  are located on one 

ray ( )1 2 0= − =ρ ρ ρ  

( ) ( )
( )

( )

( )

1 2 3
3 3 2

0

23
2

, 0,
2

2

min
II n

min
n ef

xR x x R d

x

τ ξ ξ
ε

σ
ε

∞

= =

=

∫



  (3.35) 

From (3.35) follows, that ( )
IIR τ  doesn’t depend on 

3maxx  from ( 1 2
3 3and  x x ). Longitudinal correlation 

coefficient remains constant 

( ) ( ) ( )
( ) ( )

1 2
3 31 2

3 3 1 2
3 3

2 1 2 1
3 3 3 33

1 2 2 1
3 3 3 3 3

,
,

/

/ ?   

II
II

min

max

R x x
K x x

x x

x x atx xx
x x x at x x

τ

τ τσ σ
= =

 <= = 
>

      (3.36) 

By fixing 1
3x  in the formula (3.36), we obtain, that the 

longitudinal correlation of the eikonal (phase) extends 
over a distance of about the path passed the ray 3~IIK x . 

Fig. 3.2 shows the dependence ( )
IIK τ  on 2

3x  at a fixed 
1
3x  

 

Figure 3.2.  The dependence of longitudinal correlation coefficient on 
2
3x  

Cross-correlation ( ),R L⊥ ρ  at 1 2
3 3x x L= =  looks 

like 

( ) ( )
( )

( )2
0

, ,
2

n
LR L R d

∞

⊥ = ∫τ ρ ρ ξ ξ
ε

   (3.37) 

In the case of isotropic Gaussian fluctuations 

( ) ( ) 2 2/22, nR L L e−
⊥ = ρ

τρ σ      (3.38) 

As it follows from (3.38) the eikonal of rays bundle has 
a Gaussian correlation. 

In the case of non-planar initial wave of Fig. 3.3 

 

Figure 3.3.  Case of non-planar initial wave 

Where 1 2,L L  designate lengths of rays, coming to 

points 1 2,r r , across 01 02,   – unit vectors along these 

rays, ( )sδ  – the distance between the rays 

1 1= = −δ ρ ρ ρ , then the correlation function of the 
eikonal is written in the form 

( )
( )

( )1 2 02
0

,
2

min
n

LR r r R d
∞

= +∫ τ δ ξ ξ
ε

  (3.39) 

The dispersion of the eikonal at 
( )1 2 , 0L L L sδ= = = is calculated by the formula 

( )
( )

( )2
02

02
n

LL R d
∞

= ∫ τσ ξ ξ
ε

     (3.40) 

As it follows from (3.39) correlation of the eikonal does 
not depend on the type of the wave shape and will be 
equal to the flat, spherical and cylindrical waves. 

In a randomly inhomogeneous medium, which is 
statistically homogeneity and isotropic, the rays 
propagating in them are in average direct, orthogonal to 
the initial surface, and the wave surfaces (phase fronts) 
retain the semblance of an initial surface on average. We 
introduce on the unperturbed (average) surface the 
coordinate system ,α β  Fig. 3.4 
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Figure 3.4.  The unperturbed surface the coordinate system 

With 0   we denote the unperturbed vector value 
tangential to the undisturbed ray and orthogonal to the 
unperturbed wave surface. Due to fluctuations in the front 
surface from the unperturbed surface normal to the front 
  will deviate from 0  by the value 1  

1 0 n
⊥∇= − =  

τ
           (3.41) 

where ⊥∇  is the operator of cross-differentiation with 
respect to the undisturbed ray. 

Vector 1 0⊥   lies in the plane tangent to the 

undisturbed wavefront 0 const=τ . 
We connect with the undisturbed ray Frenet trihedron 

formed by the unit vectors 0 0 0, , α β  where 0  – 

tangent, 0α  – of the principal normal, 0β  – binormal 
vectors and submit 

1 1 0 1 0t t= + α βα β             (3.42) 

Then up to the smallness of second order angles of 
arrival of the perturbed ray ,α βθ θ  will be equal 

( ) 1 1
1 0 1

1 1 1,t
n n nα α β

α β

τ τθ α τ θ
ρ ρ⊥
∂ ∂

≈ = ∇ = =
∂ ∂

(3.43) 

From (3.43) follows, that the average values of the 
angles ,α βθ θ  taking into account  1 0=τ  will be 
equal to 

0= =α βθ θ                (3.44) 

and correlation matrixes are given by expressions 

( ) ( ) ( )
( )

1 2 1 2

2
2

1 2

,

,1

R

R
n

θ
αβ α β

α α

ρ ρ θ ρ θ ρ

ρ
ρ ρ

⊥

= =

∂
=

∂ ∂

    (3.45) 

Dispersions of angles ,α βθ θ  are equal to 

2 21
3sph pl=α αθ θ               (3.46) 

From (3.46) follows, that the angles dispersion of a 
spherical wave arrival is less three times, than at a plane 
wave, that is caused by the fact that in the spherical wave 
rays propagate on average nearer to each other than in the 
plane. 

A ray in a randomly nonuniform statistically 
homogeneous isotropic medium is a space curve, 
fluctuating around the middle (undisturbed) ray. The 
average value of fluctuations is determined by the mean 
square displacement of the ray from the unperturbed 
position. In the case of on average plane wave, 
coordinates of points of a ray trajectory are written as 
(3.1), then in the first approximation 

1
1 1 1 3

0 0

L L

r ds dx⊥= = ∇∫ ∫ τ             (3.47) 

From (3.47) follows, that a ray is displaced only in the 
transverse direction relative to the direction of the 
undisturbed ray. In (3.47) it is assumed that the initial 
surface is plane and the front is flat on average, 
propagating in the direction 3x , then 1r , depends on 

1 2,x x . 
Calculating the elements of the correlation matrix we 

obtain 

( ) ( )

( )

2

2

, ,

,

r r

r
II

R L R L

R L

α β
αβ αβ

α β

ρ ρ
ρ ρ δ

ρ
ρ ρ

ρ
ρ

⊥

 
= = − + 

 

+

 (3.48) 

( )
( )2 2 2

3

2
0

,
6

nr
RLR L d

∞

⊥

∂ +
= −

∂∫
ρ ξ

ρ ξ
ρ

 

( )
( )2 2 2

3

0

2 2

, ,
6

nr
II

RLR L d

α β

ρ ξ
ρ ξ

ρ

ρ ρ ρ

∞ ∂ +
= −

∂

= +

∫  (3.49) 

From formulas (3.48), (3.49) follows that 
( ) ( )1 1 1 2,r rα βρ ρ  at 1 2=ρ ρ  are uncorrelated 

( )1 1 0 0rr r R= =α β αβ            (3.50) 

and mean squares (dispersions) are equal to each other, 
which is a consequence of fluctuations of the isotropic 
medium inhomogeneity 
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( ) ( )'2
2 2

1 1
0

0
6

rr
pl

RLr r R d
∞

= = = − ∫α β αα

ξ
ξ

ξ   
(3.51) 

In the case of a spherical wave 

2 2
1 1

1
10sph plr r=α α              (3.52) 

the mean square of the lateral displacement of the ray in a 
spherical wave is 10 times less than in a plane. 

In a randomly inhomogeneous medium the signal 
propagation time (energy transfer) is determined by the 
group velocity 

( ) 1

/гр

n
С С

−
 ∂

=  ∂ 

ω
ω

           (3.53) 

by group means 

( )
0 0

L L

gr

ndsC ds
С

∂
= =

∂∫ ∫
ω
ω

        (3.54) 

In a statistically homogeneous isotropic medium 
const=ε , which means that there is no regular 

refraction (bending) of the ray. Introducing   as 

0
k

K

∞

=

= ∑                    (3.55) 

in the first approximation we obtain 

1
0

1
2

L

ds∂  
=  ∂  ∫ ω

ω ε


           (3.56) 

In the absence of a temporary (frequency) dispersion ε  
and   are independent of ω , then from (3.56) is 
obtained 

1 1
0

1
2

L

ds 
= = 

 ∫ ω τ
ε


         (3.57) 

From (3.57) follows that in this approximation the 
group path correction 1  coincides with the correction 
of the phase path (eikonal). This is a consequence of 
equality of the phase and group velocity in a statistically 
homogeneous isotropic medium. In particular, their 
dispersions are equal. 

( )2 2
0 0

0 0

1 ;
2

L L

nds R r s ds = =  ∫ ∫ τσ σ ξ
ε   (3.58) 

Consider the second approach for the description of the 
ray propagation and of wave fronts in randomly 
inhomogeneous media. This approach is based on the 
theory of Markov’ processes and allows us to describe 
the diffusion of rays. 

We introduce on the initial surface the Cartesian 
coordinate system 1 2 3, ,x x x  so that the axis 3x  has as 

direction vector the unperturbed ray, and 1 2,x x  are 

located in the tangent plane to 0
tS  normal to the ray 0r . 

 

Figure 3.5.  Scheme of ray fluctuation in inhomogeneous medium 

The coordinate r  of the arbitrary point M  of a 
curved ray can be represented as 

( ) ( ) ( )( )3 1 3 2 3, , ,r x x x x xρ ρ= =  

The equation describing the ray fluctuation can be 
written as  

( ) ( ) ( )3 3 3

2 2
3 3

, ,
,

1 1

d x x a xd
dx dx
ρ τ ρ ττ

τ τ
⊥ ⊥ ⊥⊥

⊥ ⊥

= =
− −

(3.59) 

where ( ) ( ) ( )1 1 1 2 1 2 3, , , , , , .a a aτ τ τ τ τ τ τ⊥ ⊥=  

Equation (3.59) applies at 2 1⊥ <τ . The case 1⊥ =τ  

corresponds to the point the ray rotation on angle / 2π . 
Considering that 2 1,⊥ <<τ  we will use the equation in 

the form of small-angle approximation 

( ) ( ) ( ) ( )3 3
3 3

3 3

, ,
d x d x

x x
dx dx
ρ τ

τ µ ρ⊥
⊥ ⊥= = ∇  (3.60) 

where ln n=µ . 
In an approximation of the diffusion random process 

the Einstein-Fokker equation (EFE) for the density 
probability has the form of [16-17] 

( ) 2
3

2
3

,
0

P x P PD
x ⊥

⊥

∂ ∂ ∂
+ − =

∂ ∂ ∂
ρ

τ
ρ τ

    (3.61) 

where D  – diffusion coefficient 

( )2 2

0

D d Ф
∞

= ∫π         (3.62) 

Here ( )Ф   – three-dimensional spectral density of 
the correlation function for µ . 
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The initial condition for (3.61) has the form 

( ) ( ) ( )0 ,P ⊥ ⊥=ρ τ δ ρ δ τ       (3.63) 

The solution (3.61) with the initial condition (3.63) is a 
Gaussian distribution with the moments 

( ) ( ) ( ) ( ) 3
3 3 3 3 3

2 , , 1, 2
3i k i k ikx x x x x x D x i kρ ρ δ= = =

( ) ( )
( ) ( )

2
3 3 3

3 3 3

,

2
i k ik

i k ik

x x D x

x x D x

ρ τ δ

τ τ δ
⊥

⊥ ⊥

=

=
        3.64) 

The longitudinal correlation of the trajectories’ points, 
located on one ray is calculated by the formula 

( ) ( ) ( )21 1 1
3 3 3 3 3

12
3

x x D x x x = − 
 

ρ ρ  (3.65) 

and the correlation coefficient according to the formula 

( ) ( )
( ) ( )

( )
1

3/23 3

2 2 1
3 3

1
3 3

3

31 1 ,
2

min

x x

x x

x x
x

ρ ρ
ξ ξ

ρ ρ

ξ

− = + + 
 

−
=

(3.66) 

The joint diffusion of the two rays is described by a 
system of eight differential equations. 

The system of equations for the coordinate points of ray 
trajectory has the form of 

( )3

3 3

,
, kk k

k
k

xd d
dx dx

µ ρρ ττ
ρ

⊥
⊥

∂
= =

∂
       (3.67) 

where 1, 2k =  – ray numbers. 
The density of probabilities, describing the relative 

diffusion of two rays 

( )
( ) ( )

* *
3

* *
1 2 1 2

, ,P xρ

δ ρ ρ ρ δ τ τ⊥ ⊥

=

= − − − −





 (3.68) 

satisfies EFE, which has the form 

( )
2

* *
* * *

3

0P P PD
x
∂ ∂ ∂

+ − =
∂ ∂ ∂ ∂



 

αβ
α β

ρ
ρ

 

( )*2 1 cosD d Ф = − ∫αβ α βπ ρ     (3.69) 

In general, the equation (3.69) cannot be solved, 
however, for some models, you can obtain approximate 
solutions, from which we can draw certain conclusions 
concerning the spread of rays. 

1. If nd  ρ , then 2 .D D=αβ αβδ  This 

corresponds to the model, when the distance ρ  between 
rays on the initial surface is much larger than the 
correlation radius nd  for a random field  grad n . 
Since in this case, their relative diffusion takes place with 
double diffusion coefficient, each ray diffuses 
independently of the other. The joint probability 
distribution in this case can be regarded as Gaussian. 
2. If 

( ) ( )

( )

2

3

0

2 ,?

4

D B

B d Ф

αβ αβ α βρ π ρ δ ρ ρ

π ∞

= +

= ∫  
 

and EFE has the form of 

( )
2

2

3

2 0P P PB
x α αβ α β

α α β

π ρ δ ρ ρ
ρ δ

∂ ∂ ∂
+ = + =

∂ ∂ ∂


 

(3.70) 

In this case, based on the EFE can obtain equations for 
2 2, , , ρ ρ  the mean square distance between the rays 

in the area 1/3
3 1( 16 )Ax A Bπ=  grows exponentially. 

In the case of diffusion of N  rays, forming a ray tube 
is determined that the average cross-sectional area of the 
ray tube is retained in the plane 3 ,x const=  i.e. 

( )3 0S x S= . 

The end of the unit vector τ , tangent to the ray 
performs random walks along the unit sphere, depending 
on t  or s . We connect with the mobile point M  on 
the ray a fixed unit sphere so that the Cartesian coordinate 
axes 1 2 3, ,x x x  with a center in point M  are moving 
parallel to a fixed coordinate system on the initial surface. 
The Frenet trihedron moving along the ray makes the 
rotational movements, which can be described in a 
spherical coordinate system Fig. 3.6 

 

Figure 3.6.  The Frenet trihedron in a spherical coordinate system 
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Vector 𝜏̅ has the components 

( )
( )

1 2 3, ,

cos sin ,sin sin ,cos

τ τ τ τ

ϕ θ ϕ θ θ

= =

=
   (3.71) 

and equations for the ray can be written as 

31 2cos sin , sin sin , cos ,dxdx dx
ds ds ds

ϕ θ ϕ θ θ= = =
 

1 2 3

cos cos sin sind
ds x x x

 ∂ ∂ ∂
= + − ∂ ∂ ∂ 

θ µ µ µθ ϕ ϕ θ

1 2

sin cos
sin sin

d
ds x x

∂ ∂
= − +

∂ ∂
ϕ ϕ µ ϕ µ

θ θ
     (3.72) 

Here ( )ln n rµ =  is a random function. 
The equations for the probability distribution functions 
( ), , ,W s r θ ϕ  satisfy the Liouville equation, which 

describes the preservation of the volume in the phase 
space [16, 17]. We introduce the probability density 
( ), , ,P s r θ ϕ , connected with W  ratio 

( ) 1, , , (sin )P s r W −=θ ϕ θ  then for ( ), , ,P s r θ ϕ  
is performed the normalization condition 

( )
0

sin , , , 1
V

dr d d P s r
π π

π

θ θ ϕ θ ϕ
−

=∫ ∫ ∫    (3.73) 

and function ( ), , ,P s r θ ϕ  satisfies the equation 

( )

1

3

2

cos
sin cos

sin

2

xP P
s x

x

P P

µ ϕ
µ θ θ

µθ ϕ

τ µ

 ∂ +  ∂∂ ∂ ∂  − − = ∂ ∂ ∂ ∂ +  ∂  
= ∇ −∇

  (3.74) 

It is evident that the initial condition for (3.74) has the 
form 

( ) ( )( )

( )( ) ( )( )( )

1
0 0 0 0 0

1
0 0 00 0

, , , , , sin

sin

P s r W r

r r

θ ϕ θ ϕ θ

δ δ θ θ θ

−

−

= =

= − −
 (3.75) 

In the process of ray diffusion the probability density 
represents the average of the product of δ - functions 
random variables. 

( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

1
0

1
0 0

, , , , , , sin

sin

P s r W s r

r s r s s

θ ϕ θ ϕ θ

θ δ δ θ θ δ ϕ ϕ

−

−

= =

= − − −
(3.76) 

In case, if the medium is statistically homogeneous 
isotropic, then the stationary ray mode of the fluctuation is 
possible, for which P  satisfies the equation 

2 0P P∇ − ∇ =µ            (3.77) 

Solution of (3.77) is written in the form  

( ) ( )
( )

2

2
, , ,

4
n r

P s r
drn r

=
∫

θ ϕ
π

      (3.78) 

The average (3.78) in n , we obtain  

( ) ( )
( )

2

2
, , ,

4
n r

P s r
n r dr

=
∫

θ ϕ
π

      (3.79) 

From (3.79) follows that ( )2~P n r , i.e. the average 
density of the probability of arrival ray trajectories is 
longer than where ( )2n r  is higher, that means the 

bending of rays to the direction of increasing 2n . The 
same conclusion follows from the equation (3.77). 

5. Conclusions 
1. Stream lines of elastic energy in inhomogeneous 

media which have the tangent vector of the 
Poynting-Umov coincide with the rays which are 
the equations on basis of Fermat’s principle. 

2. Nonlinear differential equations for the trajectories 
of rays describe the occurrence of deterministic 
chaos of rays for certain types of inhomogeneous 
structures. In this case the rays behave randomly 
and it is therefore necessary to use the apparatus 
of stochastic functions and fields. 

3. It was considered two models of inhomogeneous 
media which are equivalent to random 
inhomogeneous structures. The first model uses 
method of moments to determinate the coordinates 
of the trajectories of rays. In the second model, the 
equations for the probability are obtained when 
the medium properties are described by random 
functions of Markov type. 

A List of Symbols 

0( , )M Mτ  - eiconal 

1 2 3( , , )V x x x  - velocity 

  - the unit vector directed along the ray 
,α β  - orthogonal curvilinear lines (rays and fronts) 

( ),θ α β  - the angle between α  and β  lines 

P  - vector of Poynting-Umov of the energy density 
E  - the total energy density 

iq  - the generalized coordinates 
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ip  - the generalized impulses 

1 2 3( , , )n x x x  - the refractive medium index 

k  - the curvature of the ray 

χ  - the torsion of the ray 

θ  - the angle between ray and grad n 

n  - unit vector, the main normal 

b  - unit vector, the binormal 

τ  - unit vector, the tangent 

, , sξ η  - the ray coordinates 
Ω  - the mean curvatures of the front 
K  - Gaussian curvatures of the front 
I  - the action 
ω  - the frequence 
Rτ  - correlation function 

( )nФ χ  - spatial spectrum 

n  - correlation radius 
2
τσ  - the dispersion 

( ), , ,p s r θ ϕ  - probability density 
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