ОБЕСПЕЧЕНИЕ ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ ТЕХНОЛОГИЧЕСКИХ КОМПЛЕКСОВ РЕЗЕРВИРОВАНИЕМ ПОЛНОКОМПЛЕКТНЫХ МАШИН

Студенты — Журба В.С., 18 рпт, 3 курс, ФТС; Круглый П.С., 38 тс, 3 курс, ФТС

Научные

руководители – Круглый П.Е., к.т.н., доцент;

Кашко В.М., ст. преподаватель кий государственный аграрный техничес

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Аннотация. В статье приведена математическая модель оптимизации полнокомплектного резерва машин для обеспечения эксплуатационной надежности технологических комплексов, основанная на минимизации суммарных потерь, учитывающая как ущерб от простоя машин, так и эффект от сокращения потребности в сопряженных ресурсах. Обоснованы величины полнокомплектного резерва для различных парков технологических комплексов.

Ключевые слова: эксплуатационная надежность, полнокомплектный резерв, технологический комплекс, пост ремонта.

Для формализации процесса взаимодействия парка машин с системой ремонта применима теория массового обслуживания.

Пусть парк уборочного комплекса состоит из m комбайнов, из которых в начале функционирования m_p работает, а n находится в ненагруженном резерве ($m=m_p+n$). Работоспособность комбайнового парка поддерживается системой ремонта, состоящей из S постов [1-4].

В данном случае рассматривается автономная работа постов, каждый из которых состоит из N ремонтных рабочих, оснащенных соответствующим оборудованием. Производительность постов определяется количеством рабочих, участвующих в восстановлении работоспособности машин. В зависимости от удаленности работающих комбайнов от центра хозяйства и состояния дорог посты размещаются обычно, или непосредственно на месте работы машин, или в мастерской.

При взаимодействии парка комбайнов с системой ремонта имеют место два принципиально различных состояния, а именно: количество постов ремонта меньше или равно числа резервных машин $(S \le n)$; число постов больше резерва (S > n). Причем в каждом из этих состояний возможны случаи наличия резерва или его отсутствия (когда все резервные комбайны находятся в системе ремонта).

После рассмотрения всех возможных состояний системы обслуживания и их вероятностей получены зависимости, составляющие систему алгебраических уравнений, решение которой позволяет определить вероятности P_k наличия в ремонте k машин (ремонтируемых и ожидающих ремонта) для стационарного состояния (для систем массового обслуживания как с неограниченным, так и с ограниченным входящим потоком требований):

$$\begin{array}{l} -\lambda m_{_{p}}P_{_{0}} + \mu P_{_{1}} = 0 \\ \lambda m_{_{p}}P_{_{k\cdot 1}} - (\lambda m_{_{p}} + \mu k)P_{_{k}} + \mu (k+1)P_{_{k\cdot 1}} = 0 \\ (1 \leq k < S \ \pi pu \ S < n; \ 1 \leq k < n \ \pi pu \ S > n) \\ \lambda m_{_{p}}P_{_{k\cdot 1}} - (\lambda m_{_{p}} + \mu S)P_{_{k}} + \mu SP_{_{k\cdot 1}} = 0 \\ (S \leq k < n) \\ \lambda (m-k+1) \ P_{_{k\cdot 1}} - \left[\lambda \left(m-k\right) + \mu k\right] P_{_{k}} + \mu (k+1) \ P_{_{k\cdot 1}} = 0 \\ (n < k < S) \\ \lambda (m-k+1) \ P_{_{k\cdot 1}} - \left[\lambda \left(m-k\right) + \mu S\right] P_{_{k}} + \mu SP_{_{k\cdot 1}} = 0 \\ (n \leq k < m, \ \pi pu \ S \leq n; \ S \leq k < m, \ \pi pu \ S > n) \\ \lambda P_{_{m\cdot 1}} - \mu SP_{_{m}} = 0. \end{array}$$

Вероятность одновременного пребывания k машин в системе ремонта, когда их количество больше числа постов при отказавшем резерве (закрытая модель), вероятность работы всех основных и наличия в резерве п машин (система ремонта свободна), среднее количество ремонтируемых и ожидаемых ремонта машин, среднее количество работающих машин, коэффициент эксплуатационной надежности при ведены в [1].

В общем виде целевая функция суммарных потерь от простоя трудовых и материальных ресурсов модели оптимизации резерва машин и состава службы ремонта имеет вид

$$\begin{split} & \underset{\rightarrow \min}{\gamma} \left(m_{p}, n, S, N \right) = & C_{_{M}} \left(1 + Y_{_{0}} \right) \left(1 - \eta_{_{MH}} + K_{_{3}} \right) + \frac{1}{m} \left\{ \left(C_{_{0}} + \sum_{j=1}^{N} C_{_{j}} + C_{_{H}} \right) \left(1 + K \right) S - \left[\left(C_{_{0}} + \sum_{j=1}^{N} C_{_{j}} + C_{_{H}} \right) \times \right. \\ & \times \left(1 + K \right) - C_{_{0}} \left[\sum_{n, \text{count} S \geq n} \left(S - k \right) \frac{\left(\rho m_{_{p}} \right)^{k}}{k!} P_{_{0}} + \sum_{k=n+1}^{S} \left(S - k \right) \frac{m_{_{p}}^{n} m_{_{p}}! \rho^{k}}{k! (m - k)!} P_{_{0}} \right] \right\}, \end{split}$$

где $C_{\scriptscriptstyle M}$ – ущерб от простоя машины и работающего на ней персонала;

 Y_0 — коэффициент, учитывающий потери от простоя сопряженных средств механизации в долях от стоимости простоя основных машин;

 $K_{_{\! 3}}$ – коэффициент, учитывающий потери от простоя машины (в относительных величинах) при переходе экипажа;

 C_0 – ущерб от простоя поста в ожидании требования на обслуживание;

С_і – часовая тарифная ставка рабочего ј-ой квалификации с начислениями;

С_н – накладные расходы;

K – коэффициент, учитывающий издержки, связанные с восстановлением поста (в долях от стоимости работы поста).

Таким образом, целевая функция (2) дает возможность оптимизировать уровень резерва и состав ремонтной службы по экономическому критерию.

Расчеты, выполненные при различных кратностях обезличенного резервирования (отношении количества резервных машин к основным), различной приведенной плотности потока отказов и однопостовой системе ремонта позволили установить следующее.

Эффективность резервирования зависит от оперативности устранения отказов и уровня безотказности машин, характеризуемых приведенной плотностью потока отказов. Чем выше показатель ρ , тем тем больше эффект от полнокомплектного резервирования. Если при $\rho=0.15$ отношение максимального коэффициента эксплуатационной надежности при резервировании к его значению без резерва составляет 1,070, то при $\rho=0.10$ оно уменьшается до 1,027, а при $\rho=0.05$ – до 1,011.

С ростом приведенной плотности потока отказов увеличивается кратность резервирования для достижения максимума эффекта. При $\rho=0,15$ максимум эксплуатационной надежности соответствует кратности резервирования 5/7, а при $\rho=0,05-1/11$.

Резюмируя вышеизложенное можно предложить следующие принципы формирования резерва полнокомплектных машин для обеспечения эксплуатационной надежности технологических комплексов.

В зависимости от парка машин технологического комплекса и формы его использования выбираются оптимальные: величина резерва, количество постов и рабочих на них.

Мобильный пост полевого ремонта оснащается передвижной ремонтной мастерской [4] с комплектом необходимого оборудования, сварочным агрегатом, набором специальных приспособлений и инструмента.

При отказах комбайнов продолжительностью до 1 ч они восстанавливаются без замены на резервный. В случае выхода из строя комбайна более чем на один час экипаж переходит на резервный, а основной восстанавливается на посту полевого ремонта. Если отказ в полевых условиях устранить не представляется возможным комбайн транспортируется в ремонтную мастерскую.

Список использованных источников

- 1. Ивашко В.С., Круглый П.Е., Кашко В.М. и др. оптимизация полнокомплектного резерва машин для обеспечения эксплуатационной надежности технических систем. Изобретатель №1 (237), 2020. Международный научно-практический журнал. Минск, 2020. С. 14–23.
- 2. Кобзарь А.И. Прикладная математика. Для инженеров и научных работников. М.: Физматлит, 2006. 816 с.

- 3. Ивашко В.С., Круглый П.Е., Кашко В.М. и др. Исследование и анализ потоков восстановлений работоспособности технических систем. Изобретатель №8–9 (224–225), 2018. С. 37–41.
- 4. Ивашко В.С., Круглый П.Е., Миленький В.С. и др. Применение передвижных ремонтных мастерских на базе автомобилей для оперативного устранения отказов машин. Изобретатель №1 (157). Минск, 2013. С. 43–45.

УДК 631.3.004.67

АНАЛИЗ ЭРГОНОМИЧЕСКОЙ СИСТЕМЫ: ВОДИТЕЛЬ-АВТОМОБИЛЬ-ДОРОГА-ВНЕШНЯЯ СРЕДА

Студенты — Домрачев Г.В., 37 тс, 4 курс, ФТС; Круглый П.С., 38 тс, 3 курс, ФТС

Научные

руководители — Круглый П.Е., к.т.н., доцент; Мисун А.Л., ассистент

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Аннотация. Выполнен анализ эргономической системы: водитель — автомобиль — дорога — внешняя среда. Необходимы дальнейшие исследования по определению типажа и структуры автомобильного парка хозяйств на основе анализа объема и структуры грузоперевозок в напряженный период, расстояний перевозок и нормативов выработки в конкретных условиях.

Ключевые слова: водитель, автомобиль, дорога, внешняя среда, эргономическая система

Автомобильный транспорт – динамичная система: подвижной состав – люди – дорога – внешняя среда, состоящая из большого числа зависимых и независимых (локальных) подсистем, действующих постоянно [1,2].

Основным звеном в рассматриваемой системе является водитель. С усложнением основных звеньев системы и взаимосвязей между ними роль водителя возрастает. Поэтому в последнее время большое внимание уделяется исследованиям психофизиологических качеств водителей.

Установлено, что определение только количества включений и выключений передач и педалей, характеризующее нагруженность отдельных систем автомобиля, не отражает действительную усталость водителя. Для определения усталости необходимо учесть и соответствующее нервное напряжение водителя. Для нормальной работы водителя необходимо обеспечить оптимальное нервное напряжение, которое косвенно измеряется частотой пульса и кожно-гальванической реакцией в мВ. Оптимальный уровень психофизиологического напряжения водителей