Исследование изменения лигандного состава хелата Eu³⁺ методами двухступенчатого лазерного возбуждения люминесценции и компьютерного моделирования кинетики

© И.В. Станишевский¹, Т.А. Павич², С.М. Арабей¹

 ¹ Белорусский государственный аграрный технический университет, 220023 Минск, Беларусь
 ² Институт физики им. Б.И. Степанова НАН Беларуси, 220072 Минск, Беларусь
 e-mail: ivanstanisheuski@mail.ru

Поступила в редакцию 11.06.2018 г.

Комплекс европий (III) — три(дибензоилметан)-трифенилфосфиноксид исследован в поликристаллическом состоянии и толуоле при 298 К с использованием метода возбуждения люминесценции двухступенчатыми прямоугольными импульсами со спадом интенсивности ступеней. Экспериментальные немонотонные кинетические кривые были численно симулированы в рамках четырехуровневой динамической модели, описывающей обратимые процессы в комплексе, связанные с его структурной перестройкой. Максимальное соответствие между экспериментальными и симулированными кривыми было получено с помощью итерационной аппроксимации, выполненной с привлечением алгоритма Нелдера-Мида. На основании полученных численных значений констант скоростей и параметров модели была дана интерпретация экспериментальных кинетик и сделан вывод о том, что они являются отражением процессов, связанных с изменением лигандного состава хелата Eu³⁺.

DOI: 10.21883/OS.2019.02.47194.176-18

Введение

Среди наиболее востребованных комплексных соединений для практических применений особое место занимают хелаты лантаноидов (Ln) с органическими лигандами. В значительной степени это обусловлено высоким квантовым выходом люминесценции ионов Ln³⁺, миллисекундным диапазоном времени жизни излучательных состояний, большим стоксовым сдвигом и фиксированным положением узких полос электронных переходов. Комплексы успешно используются при создании новых активных сред лазеров, полимерных волоконных усилителей для целей оптических коммуникаций [1]. Значительные успехи достигнуты при разработке электролюминесцентных материалов на их основе: органических светодиодов [2], цветных дисплеев и твердотельных микроисточников белого света [3], светопреобразующих покрытий для солнечных элементов [4], люминесцентных сенсоров [5]. Комплексы оказались перспективными в биологических и медицинских разработках [6], при изучении биологических процессов in vitro и in vivo [7], в качестве люминесцентных зондов для диагностики злокачественных новообразований [8] и при иммунологических обследованиях [9].

Квантовый выход сенсибилизированной люминесценции комплексов в основном контролируется безызлучательной дезактивацией энергии из состояния переноса заряда (CTS). Значение квантового выхода зависит от энергетического положения CTS относительно уровней лигандов и иона лантаноида [10,11], а также от температуры [12,13]. Однако квантовый выход может значительно уменьшиться, когда во внутреннюю координационную сферу иона Ln³⁺ попадают молекулы воды в виде дополнительных лигандов [14,15]. В этом случае тушение обусловлено безызлучательной дезактивацией возбужденных состояний иона Ln³⁺ высокочастотными обертонами валентных O–H-колебаний молекул воды [16].

Для лантаноидных комплексов в поликристаллическом состоянии и в растворе число координационных мест, занимаемых лигандами во внутренней сфере (координационное число), может изменяться от шести до двенадцати. В случае координационной ненасыщенности к Ln³⁺ могут дополнительно координироваться молекулы воды из локального окружения. В то же время установлено, что в некоторых растворах в темновых условиях и при фотовозбуждении (РЕ) ряд комплексов претерпевает сложную стерическую перестройку внутренней и/или внешней координационных сфер. Это приводит к изменению их лигандного состава (в первую очередь, количества лигандных молекул воды) и, как следствие, к изменению спектрально-кинетических параметров люминесценции. Так, в работе [17] обнаружено усиление люминесценции $mpuc-\beta$ -дикетонатов Ln³⁺ в толуоле после добавления воды в раствор. Авторы интерпретировали неожиданный эффект как результат образования внешнесферных водных ассоциатов, приводящих к диссоциации слаболюминесцирующих димерных комплексов, а также уменьшением безызлучательных потерь через CTS. Аналогичный эффект для *β*-дикетонатных комплексов Eu³⁺ наблюдался и в пористом стекле [18]. В последнем случае включение молекул воды во

Рис. 1. Нормированные спектры поглощения $Eu(DBM)_3$ ТРРО в толуоле (1) и люминесценции в поликристалле (2) и в толуоле (3) при $\lambda_{exc} = 405$ nm и 298 K. На вставке изображена структура $Eu(DBM)_3$ ТРРО.

внешнюю координационную сферу комплекса усиливало $\pi \to \pi^*$ -переходы в сопряженной системе лигандов, увеличивая тем самым эффективность заселения ${}^{5}D_{0}$ -состояния. В работе [19] описан аналитический датчик обнаружения и количественного определения веществ, принцип действия которого основан на усилении люминесценции лантаноидного комплекса в результате выхода молекул воды из внутренней координационной сферы при РЕ комплекса и их замещения молекулами аналита. Установлено, что возрастание квантового выхода люминесценции связано со способностью некоторых органических растворителей вытеснять воду из внутренней координационной сферы комплексов Ln³⁺ [15,20]. Так, в работе [15] с помощью анализа кинетики затухания люминесценции лабильных комплексов в жидких растворах при импульсном селективном лазерном возбуждении были определены скорости лигандного обмена. Для успешного применения метода оказалось необходимым, чтобы скорость лигандного обмена заметно превышала скорость дезактивации возбужденных состояний ионов Ln³⁺. Отмеченные выше работы свидетельствуют о том, что природа и состав лигандного окружения ионов Ln³⁺ заметным образом влияют на параметры их люминесценции. Имеются все основания полагать, что в случае выбора адекватной кинетической модели процесса (в том числе лигандного обмена) можно определить ее параметры. Авторы настоящей работы успешно применили разработанные ими новые методы изучения кинетики фотопроцессов для получения информации о внутримолекулярных константах скоростей и скоростях лигандного обмена. Так, в работах [21,22] описан метод характеризации метастабильных электронных состояний органических молекул, основанный на анализе кинетики уменьшения и восстановления интенсивности их флуоресценции, возбуждаемой амплитудно-модулированным квазистационарным лазером. В дополнение к симуляции динамики наблюдаемых фотопроцессов в [23] впервые была реализована итерационная аппроксимация сложного немонотонного профиля кинетики люминесценции. Важной особенностью метода является то, что он позволяет обнаружить и количественно характеризовать все фотопроцессы, происходящие в субмиллисекундном и более длительном диапазонах времен, в том числе связанные с изменением лигандного состава в лантаноидных комплексах. Методы дают возможность изучать относительно медленные изменения физико-химических и структурных свойств (фотостойкость, старение и др.) объектов. Такую информацию для комплекса Eu³⁺ трудно получить как при стационарном, так и при типичном импульсном (лазерном) РЕ.

Цель настоящей работы состояла в исследовании кинетики люминесценции комплекса Eu³⁺ методами амплитудно-модулированного лазерного возбуждения и компьютерного моделирования для получения информации о скоростях лигандного обмена, на основании которой можно судить о качественном составе лигандного окружения иона Eu³⁺ во внутренней координационной сфере.

Объекты и методы исследования

Исследовался комплекс европий (III)-три(дибензоилметан)-трифенилфосфиноксид (Eu(DBM)₃TPPO, где DBM — дибензоилметан, ТРРО — трифенилфосфиноксид), структура которого изображена на рис. 1. Комплекс был синтезирован по модифицированной методике [24] из следующих компонентов: нитрата европия (Eu(NO₃)₃ · 6H₂O), DBM и ТРРО при молярном соотношении 1 : 3 : 1. Соединения DBM и ТРРО растворяли в этаноле и при интенсивном перемешивании к нему по каплям добавляли 1н водный раствор NaOH, доводя pH до 6.0. К полученному раствору по каплям добавляли водный раствор нитрата европия. Реакционную массу упаривали и выпавший осадок полученного Eu(DBM)₃TPPO отфильтровывали, промывали смесью воды и этанола в соотношении 1 : 1, сушили до постоянного веса в эксикаторе над безводным хлоридом кальция, а затем перекристаллизовывали в ацетоне.

Люминесценция комплекса исследовалась в твердом поликристаллическом мелкодисперсном состоянии (далее, в поликристалле) и растворе (толуол) при 298 К. Для ее возбуждения использовалось модулированное излучение полупроводникового лазерного диода ($\lambda_{gen} = 405$ nm), профиль которого представлял последовательность двухступенчатых, прямоугольных, спадающих по интенсивности импульсов. Основные детали измерений описаны в [21,22]. В настоящей работе методика была усовершенствована: записывался профиль PE, который учитывался при расчетах, путем измерения кинетики люминесценции Родамина В в этаноле. Спектр стационарного поглощения комплекса в растворе при 298 К измерен на спектрофотометре Cary-500 Scan UV-Vis-NIR (Varian, США, Австралия).

Интерпретация эмпирических данных основывалась на результатах численного моделирования, реализованных в следующих приемах и методах. Вначале для монотонных участков экспериментальных кривых с помощью алгоритмов решения обратной задачи [25,26] получались сведения о характеристических скоростях процессов. Далее на основании выбранной кинетической одномерной модели обратимых фотопроцессов, описываемой системой обыкновенных дифференциальных уравнений (SODE), численно рассчитывалась динамика населенностей энергетических уровней и симулировалась люминесценция. Модели не учитывали вынужденное испускание, межмолекулярные взаимодействия и необратимые фотопроцессы. При этом некоторые начальные значения коэффициентов SODE задавались с учетом полученных ранее характеристических скоростей процессов. Более подробные сведения о расчетах приведены в [21-23,27]. Отметим, что численные методы интегрирования были использованы по причине того, что модели с числом уровней более трех не имели точного аналитического решения. В дополнение к прямым расчетам населенностей для определения параметров модели и констант скоростей внутри- и межмолекулярных процессов была выполнена итерационная аппроксимация экспериментальных немонотонных кинетических кривых кривыми симулированной люминесценции. Решение этой обратной задачи было реализовано с

помощью алгоритма оптимизации Нелдера-Мида [28], в котором при поиске решения не используются производные. Как и в работе [23], итерационно минимизировалась целевая функция, представляющая собой сумму квадратов разностей интенсивностей в заданных временных точках: численных значений симулированной кривой люминесценции и соответствующих им значений экспериментальной кривой. Подчеркнем, что в отличие от широко используемых приемов аппроксимации монотонных участков экспериментальных кривых экспоненциальными функциями в настоящей работе представлены результаты аппроксимации немонотонных кривых суперпозицией решений SODE во всем временном диапазоне. Для опробованных гипотетических моделей в процессе поиска решения варьировались коэффициенты (константы скоростей) SODE и параметры и находилось новое оптимальное решение. Для повышения достоверности и однозначности решения количество варьируемых констант скоростей и параметров модели ограничивалось минимально достаточным количеством (не более 8). Критерий окончательного выбора модели был следующий. Модель должна обеспечить: 1) минимальное значение целевой функции, 2) детальное соответствие профилей сопоставляемых кинетических кривых, и главное, 3) физически правдоподобные значения расчетных констант скоростей. Все расчеты были проделаны с помощью созданных авторами оригинальных процедур, написанных и реализованных в среде Scilab [29]. Расчетная часть процедур содержала как подключаемые модули известных библиотек [25,26], так и встроенные модули Scilab (в частности, neldermead new).

Результаты и их обсуждение

Спектр поглощения $Eu(DBM)_3$ TPPO в области 310–415 nm представлен на рис. 1 (кривая *I*). В этой области наблюдается широкая интенсивная полоса с максимумом при 343 nm, соответствующая $S_0 \rightarrow S_1$ -переходам органических лигандов.

Люминесценция иона Eu³⁺ проявляется благодаря эффективной интеркомбинационной конверсии $S_1 \longrightarrow T_1$ внутри лиганда и переносу энергии с T_1 -уровня на излучающий 5D_0 - уровень Eu³⁺. Спектр люминесценции поликристалла (кривая 2, рис. 1) имеет достаточно узкие полосы, соответствующие в области 575–640 nm ${}^5D_0 \rightarrow {}^7F_i$ -переходам, где i = 0-2. Самая интенсивная из них (610–620 nm) принадлежит ${}^5D_0 \rightarrow {}^7F_2$ -переходу, наиболее чувствительному к симметрии ближайшего окружения Eu³⁺. При комнатной температуре в толуольном растворе эта полоса состоит из нескольких интенсивных компонентов (кривая 3, рис. 1), что указывает на низкую симметрию комплекса. Отметим, что одиночная линия при 580 nm (переход ${}^5D_0 \rightarrow {}^7F_0$) свидетельствует о чистоте исследуемого комплекса.

Кинетика люминесценции имеет специфическое поведение: профиль экспериментальных кривых заметно

Рис. 2. Кинетика люминесценции $Eu(DBM)_3TPPO$ в поликристалле при 298 К ($\lambda_{exc} = 405$ nm, $\lambda_{mon} = 618$ nm, $\Delta\lambda_{mon} \approx 0.2$ nm) (1). Профиль лазерного импульса РЕ (2). Разность между экспериментальной и расчетной интенсивностями люминесценции (3).

Рис. 3. Кинетика люминесценции Eu(DBM)₃TPPO в толуоле при 298 К ($\lambda_{exc} = 405$ nm, $\lambda_{mon} = 612$ nm, $\Delta\lambda_{mon} \approx 1.0$ nm) (1). Профиль лазерного импульса РЕ (2). Разность между экспериментальной и расчетной интенсивностями люминесценции (3).

отличается от профиля импульса РЕ. В частности, для поликристалла при регистрации в пределах контура полосы 610–620 nm кинетика имеет профиль, изображенный на рис. 2 (кривая *I*). В толуоле подобный профиль кинетики наблюдается только при $\lambda_{mon} = 618$ nm, а при смещении в коротковолновую область ($\lambda_{mon} = 612$ nm) плавно трансформируется в профиль, изображенный на рис. 3 (кривая *I*). Если кинетику условно разбить на участки, которые на рис. 2 и 3 обозначены цифрами I–V, то наиболее существенные различия наблюдаются на участках II и IV, соответствующих каждой отдельной ступени РЕ. Для поликристалла интенсивность на участке II падает, а на IV — возрастает. В толуоле, в частности, при $\lambda_{mon} = 612$ nm наблюдается противоположная картина. Типичные скорости изменения интенсивности на участках I, III и V составляют ~ $2000 \, {\rm s}^{-1}$ для поликристалла и ~ $4500 \, {\rm s}^{-1}$ для толуола, а на участках II и IV соответственно ~ $30 \, {\rm u} \sim 10 \, {\rm s}^{-1}$. Для всех участков выявлена дисперсия значений констант скоростей процессов (немоноэкспоненциальность кривых).

Общепринятый каскадный механизм миграции энергии РЕ в органических комплексах лантаноидов, когда после интеркомбинационной конверсии с возбужденного синглетного S₁ на триплетный T₁-уровень лиганда происходит перенос энергии на ${}^{5}D_{1}$ -уровень Eu $^{3+}$, а затем на его излучательный 5D_0 -уровень, не в состоянии объяснить наблюдаемую кинетику на участках II и IV. Учитывая известные типичные значения констант скоростей внутрикомплексных процессов заселения уровней Eu^{3+} (> $10^6 s^{-1}$) [13,30], можно утверждать, что каскадный процесс миграции энергии РЕ в комплексе Eu³⁺ может быть вполне корректно заменен эквивалентным одностадийным процессом. Например, таким, в котором при РЕ непосредственно заселяется ${}^{5}D_{0}$ уровень, который затем дезактивируется на уровни ${}^{7}F_{i}$. Типичные значения скоростей изменения интенсивности на участках I, III и V ожидаемо оказались близкими к известным константам скоростей ${}^5D_0 \rightarrow {}^7F_2$ -перехода $(\approx 2000 - 4000 \,\mathrm{s}^{-1})$ [13,30]. Вместе с тем, скорости на участках II и IV оказались на два порядка меньше. Возникает вопрос о том, какие медленные $(0-1000 \, \text{s}^{-1})$ молекулярные процессы обусловливают такое поведение кривых на этих участках. Можно утверждать, что уровни энергии, участвующие в миграции энергии РЕ на ион Eu³⁺ не могут быть вовлечены в такие медленные процессы. Это связано с тем, что константы скорости дезактивации этих уровней (в том числе и уровня CTS) превышают 10^6 s^{-1} , что значительно выше наблюдаемых максимальных скоростей (4000 s⁻¹) изменения интенсивности. Участие фононов кристаллической решетки [13] в медленных процессах тем более невозможно, поскольку при 298 К они имеют пикосекундные характеристические времена жизни.

Важно отметить, что обнаруженное уменьшение и возрастание интенсивности люминесценции, в частности, в поликристалле имеет заметное сходство с кинетикой фейдинга и антифейдинга флуоресценции порфиринов [21,22]. Эффекты в последних были связаны с процессами установления разных равновесных населенностей метастабильного T_1 -состояния при изменении интенсивности двухступенчатого РЕ. Проведенные авторами [23] расчеты показали, что такое сходство вызвано обратимыми структурными фотопревращениями комплекса Eu^{3+} , которые также приводят к изменению равновесных населенностей уровней. На основании апробации трех- и четырехуровневых моделей была выбрана та, которая наиболее адекватно описывала экспериментальные кинетические зависимости как для

Параметры и константы скоростей	Поликристалл ($\lambda_{ m mon}=618 m nm)$		Раствор ($\lambda_{mon} = 612 \text{ nm}$)	
	Параметр, arb. units	Константа скорости, s^{-1}	Параметр, arb. units	Константа скорости, s^{-1}
n_1	1	-	1	-
n_2	0.2-0.5	_	0.05 - 0.1	_
r_1	0.01 - 0.1	—	0.02 - 0.05	—
r_2	0.3-0.5	—	0.05 - 0.1	—
$k_{\rm exc1}$	-	3-10	-	200-400
$k_{\rm exc2}$	—	300-1000	—	2000-4000
p_1	—	2500-4500	—	5200-6000
p_2	-	1900-2200	-	3200-3800
h_{12}	—	80-250	—	20-30
h_{21}	—	50-65	—	12-16
<i>B</i> 12	-	3-7	-	0.1-0.3
<i>g</i> 21	_	16-20	_	3-8

Расчетные значения констант скоростей и параметров модели

поликристалла, так и раствора по указанным выше критериям. Модель включала переходы в двух двухуровневых комплексах К1 и К2, которые дополнительно связаны друг с другом обратимыми превращениями. В случае Eu(DBM)₃TPPO такими превращениями могут быть обратимые структурные фотопревращения. Схема энергетических уровней и переходов между ними для выбранной модели изображена на рис. 4.

Путь заселения ${}^{5}D_{0}^{(1)}$ - и ${}^{5}D_{0}^{(2)}$ -уровней комплексов К1 и К2 в результате быстрой каскадной миграции энергии РЕ с лиганда на Eu³⁺ показан на схеме в виде изогнутых стрелок, и оказался вполне допустимым упрощением. В целях уменьшения количества коэффициентов SODE предполагалось, что переходы между К1 и К2 существуют только между возбужденными уровнями ${}^{5}D_{0}^{(1)}$ и ${}^{5}D_{0}^{(2)}$ (соответствующие константы скоростей переходов — h_{12} и h_{21}) и основными ${}^{7}F_{2}^{(1)}$ и ${}^{2}D_{12}$ и g_{21}). SODE, описывающая модель, имела вид

$$\begin{cases} [b] \frac{d \left[{}^{7}F_{2}^{(1)} \right]}{dt} = -(k_{\text{exc1}} + g_{12}) \left[{}^{7}F_{2}^{(1)} \right] \\ + p_{1} \left[{}^{5}D_{0}^{(1)} \right] + g_{12} \left[{}^{7}F_{2}^{(2)} \right], \\ \frac{d \left[{}^{5}D_{0}^{(1)} \right]}{dt} = -(p_{1} + h_{12}) \left[{}^{5}D_{0}^{(1)} \right] \\ + k_{\text{exc1}} \left[{}^{7}F_{2}^{(1)} \right] + h_{12} \left[{}^{5}D_{0}^{(2)} \right], \\ \frac{d \left[{}^{7}F_{2}^{(2)} \right]}{dt} = -(k_{\text{exc2}} + g_{21}) \left[{}^{7}F_{2}^{(2)} \right] \\ + p_{2} \left[{}^{5}D_{0}^{(2)} \right] + g_{12} \left[{}^{7}F_{2}^{(1)} \right], \\ \frac{d \left[{}^{5}D_{0}^{(2)} \right]}{dt} = -(p_{2} + h_{21}) \left[{}^{5}D_{0}^{(2)} \right] \\ + k_{\text{exc2}} \left[{}^{7}F_{2}^{(2)} \right] + h_{12} \left[{}^{5}D_{0}^{(1)} \right]. \end{cases}$$
(1)

Полагалось, что (1) замкнута: $[{}^{7}F_{2}^{(1)}(t)] + [{}^{7}F_{2}^{(2)}(t)] + [{}^{5}D_{0}^{(1)}(t)] + [{}^{5}D_{0}^{(2)}(t)] = [{}^{7}F_{2}^{(1)}(0)] + [{}^{7}F_{2}^{(2)}(0)] = n_{1} + n_{2} = \text{сопst.}$ Параметры n_{1} и n_{2} — исходные концентрации комплексов К1 и К2 соответственно. Интенсивность люминесценции рассчитывалась как сумма населенностей возбужденных ${}^{5}D_{0}^{(1)}$ - и ${}^{5}D_{0}^{(2)}$ -уровней со своими весовыми вкладами r_{1} и r_{2} : $I(t)_{\text{lum}} \sim r_{1} [{}^{5}D_{0}^{(1)}(t)] + r_{2} [{}^{5}D_{0}^{(2)}(t)]$. Параметры r_{1} и r_{2} по сути являются излучательными вкладами соответственно в p_{1} и p_{2} . В таблице приведены рассчитанные значения констант скоростей переходов и параметров рассматриваемой модели.

Анализ рассчитанных данных для Eu(DBM), TPPO в поликристалле показывает, что в основном состоянии он существует преимущественно в виде комплекса К1 $(n_1 > n_2)$, однако эффективность его возбуждения мала $(k_{\text{excl}} \ll k_{\text{exc2}})$. В ${}^{5}D_{0}^{(1)}$ -состоянии К1 с эффективностью ~ 0.05 $(h_{12}/(p_1 + h_{12}))$ преобразуется в К2 благодаря ${}^{5}D_{0}^{(1)} \leadsto {}^{5}D_{0}^{(2)}$ -переходу. Обратный процесс ${}^{5}D_{0}^{(1)} \lt {}^{5}D_{0}^{(2)}$ менее эффективен $(h_{12} > h_{21})$. Имеет место соотношение $p_1 > p_2$ и $r_1 < r_2$. В основном состоянии равновесие между обратимыми темновыми процессами превращений К1 <~~> К2 смещено в сторону образования К1 (g₁₂ < g₂₁). Отметим, что скорость образования К2 в возбужденном состоянии превышает скорость его распада в основном $(h_{12} \gg g_{21})$. Временные параметры кинетики люминесценции на участках I, III и V хорошо коррелируют со значениями p_1 и p_2 , а на участках II и IV они имеют тот же порядок величины, что и рассчитанные значения h_{12} , h_{21} , g_{12} и g_{21} . Именно значения этих констант скоростей определяют наблюдаемые медленные изменения интенсивности. Расчеты показали, что уменьшение и восстановление интенсивности люминесценции на участках II и IV вызвано как накоплением молекул на основном уровне К2 (${}^{7}F_{2}^{(2)}$), так и является результатом изменения населенностей всех энергетических уровней К1 и К2. Последнее отличается от случая порфиринов [21,22].

В толуоле значения n_2 , r_1 , r_2 , а также h_{12} , h_{21} , g_{12} и g_{21} меньше аналогичных в поликристалле, хотя между одноименными константами наблюдается пропорциональность. При этом значения p_1 и p_2 выше соответствующих значений в поликристалле. Как и в случае поликристалла медленные изменения интенсивности люминесценции являются как результатом изменения населенностей всех уровней, так и образованием долгоживущего К2. Однако более низкие значения h_{12} . h_{21} , g_{12} и, главное, g_{21} приводят к тому, что на участках II и IV наблюдается возрастание интенсивности люминесценции (рис. 3). Расчеты кинетики при $\lambda_{mon} = 618$ nm (в этом случае, как отмечалось, ее профиль имеет схожесть с наблюдаемой в поликристалле) показали, что некоторые из этих констант заметно возрастают.

Результаты моделирования позволяют создать следующую качественную картину фотофизических процессов в Eu(DBM)₃TPPO. Значения суммарных констант скоростей p_1 и p_2 и их соотношение $(p_1 > p_2)$, а также соотношение параметров r_1 и r_2 ($r_1 < r_2$) позволяют с учетом литературных данных [14,15] предположить, что первая координационная сфера комплекса К1 содержит молекулы тушителя (воды), а в первой координационной сфере комплекса К2 тушители отсутствуют или их меньше, чем в К1. Молекулы воды, находясь в первой координационной сфере К1 в виде *n* дополнительных лигандов — $[Eu(DBM)_3 TPPO(H_2O)_n]$, участвуют в безызлучательном размене энергии возбуждения иона Eu³⁺ на энергию собственных обертонов высокочастотных О-Н-колебаний, что подтверждается малыми значениями r₁. В возбужденном состоянии прочность связей Eu³⁺ с внутрисферными лигандами ослабевает и некоторое количество (m) молекул воды покидают внутреннюю координационную сферу, в результате чего образуется более люминесцирующий возбужденный комплекс К2 $[Eu(DBM)_3 TPPO(H_2O)_{n-m}]^* \cdot (H_2O)_m$. Уменьшение количества молекул воды в пределах первой координационной сферы приводит к уменьшению суммарной константы скорости p2 с одновременным увеличением интенсивности люминесценции (изза возрастания r_2). В основном состоянии К2 — $[Eu(DBM)_3TPPO(H_2O)_{n-m}](H_2O)_m$ лабильные молекулы воды, покинувшие координационную сферу, снова связываются с Eu³⁺, в результате чего исходное лигандное окружение во внутренней сфере восстанавливается, и К2 превращается в К1 — $[Eu(DBM)_3TPPO(H_2O)_n]$. Таким образом, общая схема обратимых превращений К1 <~~>К2 следующая:

Рис. 4. Схема энергетических уровней комплексов К1 и К2 и переходов между ними: k_{exc1} и k_{exc2} — константы скорости РЕ, p_1 и p_2 — суммарные константы скорости внутримолекулярной дезактивации уровней ${}^5D_0^{(1)}$ и ${}^5D_0^{(2)}$, h_{12} и h_{21} — константы скоростей прямых и обратных фотопревращений в ${}^5D_0^{(1)}$ - и ${}^5D_0^{(2)}$ -состояниях, g_{12} и g_{21} — константы скоростей прямых и обратных темновых превращений в ${}^7F_2^{(1)}$ - и ${}^7F_2^{(2)}$ -состояниях.

Весомым доводом в пользу описанного механизма превращений служит тот факт, что при температуре 77 К интенсивность люминесценции на участках II и IV полностью повторяет профиль РЕ. Очевидно, что при низкой температуре отсутствует лабильность молекул воды, и лигандный состав комплекса остается неизменным.

Для раствора может быть и альтернативная интерпретация результатов, схожая с приведенной в [17]. Комплексы К1, находясь в среде гидрофобного толуола, образуют внешнесферные ассоциаты, которые не люминесцируют. При РЕ молекулы воды покидают первую координационную сферу комплекса К1, ассоциаты распадаются и образуются люминесцирующие комплексы К2. Другая альтернативная интерпретация следующая: перемещение молекул воды во внешнюю координационную сферу комплекса может усиливать $\pi \to \pi^*$ -переходы в лигандах [18] и увеличивать излучение с ${}^5D_0^{(2)}$ -уровня за счет увеличения r_2 .

Заключение

Метод генерации двухступенчатых лазерных импульсов со спадом интенсивности ступеней, примененный для исследования обратимых фотопроцессов в хелате Eu³⁺, дал информацию, которую трудно или невоз-

численного решения системы обыкновенных дифференциальных (кинетических) уравнений, описывающих процессы в выбранной модели, была дополнена итерационной аппроксимацией решений. Реализованная на базе алгоритма Нелдера-Мида, в котором не используются производные, она позволяет не только добиться максимального соответствия (подобия) сопоставляемых экспериментальных и симулированных кривых, но и получить численные значения констант скоростей и параметров модели. Такой подход для анализа кинетики был применен, по-видимому, впервые, и позволил, несмотря на значительно возросший объем расчетов, количественно обосновать интерпретацию полученных данных. Полученные численные значения констант скоростей и параметров модели позволили сделать вывод о том, что в Eu(DBM)₃TPPO имеет место изменение лигандного состава в основном и возбужденном состояниях. Последнее является видом гидратной изомерии, в которой имеет место перераспределение молекул воды между внутренней и внешней координационной сферами под действием фотовозбуждения. Необходимо отметить, что для раствора возможен и альтернативный подход к интерпретации.

Работа выполнена при частичной финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (проект № Ф17-005).

Список литературы

- [1] Kuriki K., Koike Y., Okamoto Y. // Chem. Rev. 2002. V. 102. N 6. P. 2347.
- [2] Kido J., Okamoto Y. // Chem. Rev. 2002. V. 102. N 6. P. 2357.
- [3] de Sá G.F., Malta O.L., de Mello Donegá C., Simas A.M., Longo R.L., Santa-Cruz P.A., da Silva Jr. E.F. // Coord. Chem. Rev. 2000. V. 196. P. 165.
- [4] Fukuda T., Kato S., Kin E., Okaniwa K., Morikawa H., Honda Z., Kamata N. // Opt. Mater. 2009. V. 32. P. 22.
- [5] Tsukube H., Shinoda S. // Chem. Rev. 2002. V. 102. N 6. P. 2389.
- [6] Eliseeva S.V., Bunzli J.-C.G. // Chem. Soc. Rev. 2010. V. 39. N 18. P. 189.
- [7] Жердева В.В., Савицкий А.П. // Успехи биол. химии. 2012.
 Т. 52. С. 315.
- [8] Павич Т.А., Воробей А.В., Арабей С.М., Соловьев К.Н. // ЖПС. 2012. Т. 79. № 4. С. 664.
- [9] Lovgren T., Pettersson K., in: K. Van Dyke, R. Van Dyke (Eds.), Luminescence Immunoassay and Molecular Application, CRC Press, Florida, 1990. 233 p.
- [10] Latva M., Takalo H., Mukkala V.-M., Matachescu C., Rodriguez-Ubis J.C., Kankare J. // J. Luminesc. 1997. V. 75. N 2. P. 149.
- [11] Faustino W.M., Malta O.L., de Sá G.F. // J. Chem. Phys. 2005.
 V. 122. N 5. P. 054109.
- [12] Berry M.T., May P.S., Xu H. // Phys. Chem. 1996. V. 100. N 22. P. 9216.

- И.В. Станишевский, Т.А. Павич, С.М. Арабей
- [13] Венчиков В.Я., Цвирко М.П. // ЖПС. 2001. Т. 68. № 3. С. 363.
- [14] Richardson F.S. // Chem. Rev. 1982. V. 82. N 5. P. 541.
- [15] Ермолаев В.Л., Свешникова Е.Б. // Успехи химии. 1994. Т. 63. № 11. С. 962.
- Beeby A., Clarkson I.M., Dickins R.S., Faulkner S., Parker D., Royle L., de Sousa A.S., Gareth Williams J.A., Woods M. // J. Chem. Soc. Perkin Trans. 2. 1999. P. 493.
- [17] Voloshin A.I., Shavaleev N.M., Kazakov V.P. // J. Photochem. Photobiol. A. 2000. V. 136. P. 203.
- [18] Петушков А.А., Шилов С.М., Пузык М.В., Пак В.Н. // Письма в ЖТФ. 2006. Т. 32. № 9. С. 65.
- [19] Bunzli J.-C.G., Piguet C. // Chem. Soc. Rev. 2005. V. 34. P. 1048.
- [20] Коровин Ю.В., Русакова Н.В., Мешкова С.Б. // Укр. хим. журн. 2000. Т. 66. № 10. С. 121.
- [21] Станишевский И.В., Соловьев К.Н., Арабей С.М., Чернявский В.А. // ЖПС. 2013. Т. 80. № 3. С. 368.
- [22] Станишевский И.В., Арабей С.М., Чернявский В.А., Соловьев К.Н. // Опт. и спектр. 2016. Т. 121. № 5. С. 770.
- [23] Станишевский И.В., Арабей С.М., Павич Т.А. // Материалы XI Международной научно-технической конференции "Квантовая электроника". Минск: РИВШ, 2017. С. 39.
- [24] Hu W., Matsumura M., Wang M., Jin L. // Jap. J. Appl. Phys. 2000. V. 39. Part 1. N 11. P. 6445.
- [25] Provencher S.W. // Comp. Phys. Commun. 1982. V. 27. N 3. P. 213.
- [26] Elster C., Honerkamp J., Weese J. // Rheologica Acta. 1992.
 V. 31. N 2. P. 161.
- [27] Станишевский И.В., Чернявский В.А. // ЖПС. 2015. Т. 82. № 5. С. 666.
- [28] Nelder J.A., Mead R. // Computer J. 1965. V. 7. P. 308.
- [29] *Scilab*. [Электронный ресурс] Режим доступа: https://en.wikipedia.org/wiki/Scilab.
- [30] Sato S., Wada M. // Bul. Chem. Soc. Jap. 1970. V. 43. N 7. P. 1955.