и балластная) и пара блоков аккумуляторных батарей. Расчет модели проводился с использованием только постоянного тока и при этом не был нарушен основной физический закон — баланс мощности. Такое допущение позволило не вводить в модель громоздкие преобразователи, что свело время моделирования к минимуму.

Яцко П.В., магистр МГЭУ им. А.Д. Сахарова БГУ, Красовский В.И., к.т.н., доцент

Международный государственный экологический институт имени А. Д. Сахарова БГУ, г. Минск

ПРИМЕНЕНИЕ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ И АККУМУЛИРУЮЩИХ УСТРОЙСТВ В ЭЛЕКТРИЧЕСКИХ СИСТЕМАХ

С целью снижения негативного воздействия деятельности людей на окружающую среду и истощения запасов полезных ископаемых, используемых для углеводородного топлива, сектор производства электроэнергии можно трансформировать за счет широкого использования возобновляемых источников энергии (ВИЭ). С учетом принимаемой концепции (использование ВИЭ), а также с учетом характера их работы (периодические изменения в выработке энергии), аккумулирование энергии будет являться одной из ключевых технологий, имеющей решающее значение для обеспечения этой трансформации.

Аккумулирование не сэкономит энергию, а наоборот приведет к дополнительным потерям, но оно позволит значительно облегчить управление потреблением энергии и, соответственно, во многих случаях поможет снизить ее нерациональное использование. Известно, что генерируемая электроэнергия большинства ВИЭ подвержена периодическим и случайным изменениям (ветровая, солнечная и гидро -энергия). При этом скорость потребления энергии потребителями изменяется во времени как в течение дня, так и в течении года. Приведение в соответствие выработки и потребления энергии во времени может осуществляться посредством аккумулирования [1-2].

Для выполнения разных функций, связанных с работой ЭС и с ВИЭ, мощность и энергоемкость аккумулирующих устройств должны быть неодинаковыми, также как и их быстродействие. Например, если рассматривать применение систем аккумулирования для технологий ВИЭ, работающих на энергии ветра, как правило, можно учитывать два обстоятельства. Одно из них заключается в том, что колебания энергии ветра присутствуют на разных скоростях ветра, что требует от системы

аккумулирования выравнивания графика выдаваемой мощности в разных временных диапазонах. Второе обстоятельство будет складываться из доминирующего характера нагрузок потребителя электрической энергии.

Нужно учитывать, что при интеграции малых объемов ВИЭ (доля в 5-10%) в сеть энергосистемы не вызывает трудностей. Для эффективного использования ВИЭ в странах с 25-40% годовой долей выработки от ВИЭ по отношению к традиционным источникам энергии применяют ряд технических решений, одним из которых является применение аккумулирования (хранения энергии) [3].

Таблица 1. Основные технические характеристики аккумуляторных технологий

Тип	Литий- ионные	Натрий- сернокислый	Свинцово- кислотный	Проточный	Воздушно- цинковый
Диапазон мощности	от 1 кВт до 50 МВт	от 0,5 кВт до 50 МВт	несколько МВт	от нескольких кВт до нескольких МВт	до 10 МВт
Энергетический диапазон	До 10 МВт-ч	До 350 МВт-ч	До 10 МВт-ч	100 кВтч до нескольких МВт-ч	до 40 МВт-ч
Время разряда	10 мин – 4 ч	6 ч – 7 ч	Мин. > 20 ч	Несколько ч	4 ч
Число циклов	2000-10000	2000-5000	500-3000	>12000	5000
Срок службы	15-20 лет	<15 лет	5-15 лет	10-20 лет	15 лет
Время реакции	Несколько мс	Несколько мс	Несколько мс	Несколько мс	Несколько мс
кпд	90-98%	75-85%	75-85%	70-75%	75%
Плотность энергии	120-180 Вт-ч/кг	100-120 Вт-ч/кг	25-35 Вт-ч/кг	10-25 Вт-ч/л	-
Капитальные	390-1300	400-600	100-200	100-400	160-250
затраты: энергия	евро / кВтч	евро / кВтч	евро / кВтч	евро / кВтч	евро / кВтч
Капитальные	150-1000	3000-4000	100-500	500-1300	1000
затраты: мощность	евро / кВтч	евро / кВтч	евро / кВтч	евро / кВтч	евро / кВтч

В системах аккумулирования, работающих в статическом режиме, преимущественно можно применять литий-ионные либо ванадиевые окислительно-восстановительные батареи, поскольку они могут обладать большой емкостью для поддержания выдаваемой мощности в заданном диапазоне. В системах, работающих преимущественно в динамическом режиме, можно использовать суперконденсаторы либо супермаховики. При применении в качестве возобновляемого источника энергии ветрогенератора, нужно учитывать то, что колебания энергии ветра делятся на кратковременные и долговременные составляющие, и для эффективного применения аккумулирующих систем можно использовать двухуровневые системы хранения, например, литий-ионные батареи и суперконденсаторы, или ванадиевые редокс батареи и супермаховики, и т.д. [4].

Проанализировав представленную информацию можно сделать вывод о том, что выбор аккумулирующих устройств может зависеть от параметров электрической сети и/или возобновляемого источника энергии. Применяя накопители энергии можно аккумулировать электроэнергию, вырабатываемую от ВИЭ во время малых нагрузок (ночное время), и генерировать в дневное время при пиковых нагрузках. Аккумулирующие системы могут участвовать в накоплении электроэнергии из электросети в момент дефицита нагрузок и выдавать электроэнергию в момент повышенного спроса, а также способствовать подержанию организованной системы противоаварийного управления и этим содействовать предотвращению каскадных аварий, что является одной из основных проблем электроэнергетики.

Список использованных источников

- 1. Арский Ю.М. Экологическая экспертиза: Обзорная информация, выпуск №6 / Ю.М. Арский. Москва: ВИНИТИ, 2018 145с.;
- 2. Жарков П.В. Перспективные технологии производства тепловой и электрической энергии/ П.В. Жарков, А. Ю. Маринченко и др. Иркутск: ИРНИТУ, 218. 102с.;
- 3. International Energy Agency, The power of transformation. Wind, Sun and the Economics of Flexible Power Systems / International Energy Agency Paris, 2014. 238 c.;
- 4. Сахаровские чтения 2019 года: экологические проблемы XXI века: материалы 19-й международной научной конференции, 23–24 мая 2019 г., г. Минск, Республика Беларусь: в 3 ч. / Междунар. гос. экол. ин-т им. А.Д. Сахарова Бел. гос. ун-та; редкол.: С. А. Маскевича [и др.]; под ред. дра ф.-м. н., проф. С.А. Маскевича, д-ра с.-х. н., проф. С.С. Позняка. Минск: ИВЦ Минфина, 2019. 300с.