прямая пропорциональность, т.е. при неизменных значениях постоянных потерь, сопротивления главных цепей, магнитного потока и скорости двигателя.

Наиболее практично, при проектировании, использовать методы эквивалентного момента и эквивалентной мощности, так как для циклично работающих механизмов, составляют циклограммы моментов и мощностей. Находят эквивалентную мощность по формуле (1):

$$P_{\text{эк3}} = \sqrt{\frac{\sum_{i=0}^{t_i} P_i^2 \cdot dt}{\sum_{i=0}^{t_i} t_i}} = P_{\text{ср.кв}} = const$$
 (1)

где $P_{3\kappa\theta}$ — эквивалентная мощность;

 P_i – мощность на валу двигателя в промежуток времени,

 t_i – длительность промежутка.

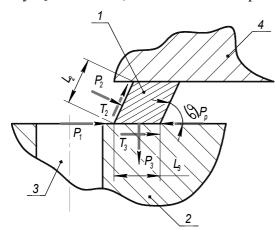
Это справедливо для перемежающего режима. В данном случае не исключается наличие зон «холостого хода», что приводит к неизбежным потерям энергии. Двигатель подбирают номинальной мощностью выше эквивалентной, и это усугубляет ситуацию. При продолжительном режиме эквивалентная мощность равна или чуть ниже номинальной, что сокращает потери энергии.

Заключение: исходя из проведенного анализа, можем предположить, что, проектируя машины циклического действия, нужно стремиться к постоянным нагрузкам на приводном валу. Частично или полностью достичь такого результата можно методами замещения рабочих операций, рекуперации энергии, использованием параллельных рабочих органов.

Список использованной литературы

- 1. Насонкин Г.А. Введение в эволюционное экспериментально-статистическое моделирование технологического процесса / Г.А. Насонкин. Київ: Техніка, 2002. 68 с.
- 2. Кіницький Я.Т. Теорія механізмів і машин / Я.Т. Кіницький. Київ: Наукова думка, 2002.-660 с.

УДК 637.531.45


Груданов В.Я., доктор технических наук, профессор, Бренч А.А., кандидат технических наук, доцент, Данилькевич А.А., Лещенко П.Ю. Белорусский государственный аграрный технический университет, г. Минск

ТЕОРЕТИЧЕСКОЕ ОПРЕДЕЛЕНИЕ МОЩНОСТИ РЕЗАНИЯ В ЭМУЛЬСИТАТОРЕ

Основной задачей процесса тонкого измельчения мясного сырья в эмульситаторах является получение однородной структуры фарша с заданной степенью измельчения, обладающего максимальной влагосвязывающей способностью и обеспечивающего наилучшее качество готовых изделий. Процесс резания при тонком измельчении выполняют на высоких скоростях режущих органов, при этом выделяется большое количество теплоты, что вызывает нежелательное повышение температуры сырья и приводит к денатурации белков, изменению водосвязывающей способности и структурно-механических свойств продукта. Для интенсификации процесса резания мясного сырья, создания оптимальных условий тонкого измельчения с учетом реологических характеристики измельчаемого продукта и геометрических параметров режущего инструмента, необходимо определить затраты мощности на резание.

Рассмотрим сечение пера ножа (рисунок 1) и силы, воздействующие в момент измельчения на его режущие кромки.

Силы трения приложенные к режущему инструменту, при скользящем резании направлены в сторону, обратную направлению относительного движения ножа. Активную силу, приложенную к ножу и вызывающую перечисленные реакции, обозначим P_p . Считая движения ножа установившимся, можем применить к нему уравнения статики. Будем считать силу P_3 известной, зависящей от скорости вращения и геометрии ножа.

 P_1 — сила сопротивления измельчению, H; P_2 — сила сопротивления проникновению в продукт лезвия ножа, H; P_3 — сила проталкивания продукта, создаваемая гранью ножа, H; L_2 и L_3 — длины граней лезвия, м; P_p — нормальная составляющая к общей силе резания; α — угол заточки, рад; T_2 и T_3 — силы трения на гранях ножа, H; I— режущая кромка; 2— ножевая решетка; 3— отверстия решетки; 4— вращающийся нож

Рисунок 1. Схема сил, воздействующих на режущую кромку ножа при измельчении

Проектируя все силы на направление опорной грани ножа, получим:

$$P_p - P_1 - P_2 \sin\alpha - T_2 \cos\alpha - T_3 = 0; \tag{1}$$

где α — угол заточки лезвия ножа.

Силы трения на гранях ножа:

$$T_2 = P_2 f_2,$$
 (2)

$$T_3 = P_3 f_3, \tag{3}$$

где f_2 – коэффициент трения продукта о нож;

 f_3 – коэффициент трения между ножом и решеткой в присутствии продукта.

Подставляя их в уравнение проекций, получим:

$$P_p = P_1 + P_2 \sin\alpha + P_2 f_2 \cos\alpha + P_3 f_3 = P_1 + P_2 (\sin\alpha + f_2 \cos\alpha) + P_3 f_3.; \tag{4}$$

Сумма проекций сил на ось, перпендикулярную первой, будет

$$P_2\cos\alpha - P_3 - T_2\sin\alpha = 0, P_2\cos\alpha - P_3 - P_2f_2\sin\alpha = 0.$$
 (5)

Подставляя сюда значение T_2 :

$$P_2(\cos\alpha - f_2 \sin\alpha) = P_3; \tag{6}$$

$$P_2 = \frac{P_3}{\cos \alpha - f_2 \sin \alpha} \tag{7}$$

Силу сопротивления измельчению продукта (P_I) считаем равномерно распределенной. При известной величине q (q — удельное сопротивление продукта резанию на единицу длины лезвия, H/M) сила P_I определяется как произведение

$$P_1 = q \cdot L_1 \tag{8}$$

где L_1 – длина лезвия, м.

Тогда активная сила (сила нормального давления на лезвие ножа) P_p с учетом формулы (4)

$$P_{p} = qL_{1} + P_{3} \frac{\sin\alpha + f_{2}\cos\alpha}{\cos\alpha - f_{3}\sin\alpha} + P_{3}f_{3}.$$
 (9)

Общее усилие на резание с учетом двух режущих кромок:

$$P_{pes} = \frac{2P_p}{\cos \beta} = 2\frac{qL_1 + P_3(\frac{\sin \alpha + f_2 \cos \alpha}{\cos \alpha - f_2 \sin \alpha} + P_3 f_3)}{\cos \beta}.$$
 (10)

Плечо приложения силы $P_{o\delta u}$ определим по выражению

$$R = \frac{R_{H} + R_{gH}}{2}.\tag{11}$$

Используя уравнения, получим выражение момента на лезвии ножа:

$$M = P_{pe3}R = \frac{qL_1 + P_3(\frac{\sin\alpha + f_2\cos\alpha}{\cos\alpha - f_2\sin\alpha} + P_3f_3)(R_{_H} + R_{_{GH}})}{2\cos\beta}.$$
 (12)

Умножая M на угловую скорость ножа ω , получим мощность, затрачиваемую на общую мощность проталкивания и резания продукта ножом через отверстия решетки:

$$N_{o \delta u \mu} = M \omega = \frac{\pi n \left[q L_1 + P_3 \left(\frac{\sin \alpha + f_2 \cos \alpha}{\cos \alpha - f_2 \sin \alpha} + P_3 f_3 \right) \left(R_{\mu} + R_{G \mu} \right) \right]}{60 \cos \beta}.$$
(13)

Оптимальная длина режущей кромки лезвия ножа:

$$L = \sqrt{\varepsilon^2 + 2R_{\scriptscriptstyle H}} (R_{\scriptscriptstyle H} - \varepsilon) \tag{14}$$

где b — ширина кольца (рабочей поверхности решетки).

Подставляя уравнение (14) в формулу (13) окончательно получаем:

$$N_{o\delta uq} = \frac{\pi n \left[q \left(\sqrt{b^2 + 2R_u \left(R_u - b \right)} \right) + P_3 \left(\frac{\sin \alpha + f_2 \cos \alpha}{\cos \alpha - f_2 \sin \alpha} + P_3 f_3 \right) \left(R_u + R_{eu} \right) \right]}{60 \cos \beta}.$$
 (15)

Данная формула позволяет определить затраты мощности, зная реологические характеристики измельчаемого продукта и геометрические параметры режущей пары, что дает возможность интенсифицировать процесс для создания оптимальных условий тонкого измельчения мясного сырья в эмульситаторах.

Список использованной литературы

- 1. Вышелесский, А.Н. Как определить силы трения при конструировании машины для резки продуктов/ А.Н. Вышелесский, Г.А. Каргина// Общественное питание. 1973. №11. С. 54—55.
- 2. Клименко, М.Н. Развитие теории процесса резания мяса и совершенствование машин для измельчения сырья в производстве колбасных изделий: дис. ...д-ра техн. наук: $05.18.12 \, / \mathrm{M.H.}$ Клименко М., $1990. 460 \, \mathrm{c.}$
- 3. Груданов, В.Я. Совершенствование конструкций машин и аппаратов пищевых производств: учебн. пособие/В.Я. Груданов, Л.Ф. Глущенко, В.В. Климович. Минск: Высш. школа, 1996.-248c.
- 4. Резник, Н.Е. Теория резания лезвием и основы расчета режущих аппаратов / Н.Е. Резник. М.: Машиностроение, 1975. 311 с.

УДК 637.5.02

Христонько Н.В., магистр, Чепелюк Е.А., кандидат технических наук, доцент Национальный университет пищевых технологий, г. Киев, Украина

ОБОСНОВАНИЕ КОНСТРУКТИВНЫХ И РЕЖИМНЫХ ПАРАМЕТРОВ ВОЛЧКА ДЛЯ ИЗМЕЛЬЧЕНИЯ БЕСКОСТНОГО МЯСНОГО СЫРЬЯ

В литературе достаточно много работ, посвященных проблемам эффективного и качественного измельчения мяса, а также повышению надежности и долговечности рабочих органов волчков, прежде всего режущего комплекта. На процесс измельчения влияют как геометрические характеристики, так и режимы работы оборудования, а также свойства измельчаемого сырья — его состав, содержание жира, температура [1].

Цель работы: обосновать рациональные режимы работы волчка K7-ФВП-160, установить влияние геометрических и режимных параметров на эффективность работы оборудования и предложить вариант усовершенствования его отдельных элементов.

Объектом исследований является процесс измельчения бескостного мяса на волчке К7-ФВП-160. Предмет исследования: конструктивные и эксплуатационные характеристики устройств для подачи сырья и режущего комплекта.

Измельчение мясного сырья является механическим процессом, который классифицируется как стохастический. Построить дифференциальное уравнение такого процесса сложно, поэтому целесообразно проводить натурные [2] и физические эксперименты, применять имитационное моделирование, учитывая при этом реальные структурно-механические свойства материала и их изменение в процессе измельчения. Для описания процесса возможно использовать и критериальные уравнения, построение которых осуществляется с использованием теории размерностей. Именно такая методика использована в представленной работе. При построении критериального уравнения, описывающего процесс измельчения сырья в волчке, принято, что необходимая для работы мощность двигателя привода N ($\text{кг} \cdot \text{м}^2 / \text{c}^3$) зависит от размеров кусков мяса b (м), диаметра решеток d (м), частоты вращения шнеков n (c^{-1}), шага между витками b (м), а также плотности продукта p (кг/м^3).