УДК 546.621:620.183

СТРУКТУРНЫЙ И ФАЗОВЫЙ АНАЛИЗ БЫСТРОЗАТВЕРДЕВШИХ СПЛАВОВ AI-Fe

© 2008 г. И. И. Ташлыкова-Бушкевич¹, Е. С. Гутько², В. Г. Шепелевич², С. М. Барайшук³

¹Белорусский государственный университет информатики и радиоэлектроники, Минск, Беларусь

²Белорусский государственный университет, Минск, Беларусь

 3 Белорусский государственный педагогический университет им. Максима Танка, Минск, Беларусь

Поступила в редакцию 20.09.2007 г.

Изучены структура и фазовый состав слаболегированных сплавов Al–Fe, полученных методом сверхбыстрой закалки из расплава. Поверхность фольг была исследована с помощью растровой электронной и атомно-силовой микроскопии и резерфордовского обратного рассеяния ионов. Изменение фазового состава сплавов в процессе отжига было изучено методом рентгеноструктурного анализа и путем измерения удельного электросопротивления и микротвердости. Сплавы Al–Fe имеют микрокристаллическую структуру с неравномерным содержанием железа в приповерхностной области образцов. Наблюдается корреляция глубинных профилей железа и фазового состава фольг. Обнаружено, что распад пересыщенного твердого α -раствора происходит в области температур 250–350°C. При повышении температуры отжига имеет место выделение метастабильной фазы Al₆Fe. В интервале 300–500°C метастабильная фаза Al₆Fe распадается, и выделяется стабильная фаза Al₃Fe.

ВВЕДЕНИЕ

Известно, что сверхбыстрая закалка из расплава (СБЗР) алюминиевых сплавов приводит к образованию материалов с уникальной микроструктурой за счет изменения химического состава, образования метастабильных фаз, а также изменения структуры [1, 2]. Целью настоящего исследования было выполнение анализа структуры БЗ-фольг слаболегированных сплавов Al–Fe в зависимости от температуры обработки и фазового состава образцов. Применение методов сверхбыстрой закалки из расплава считается перспективным для повышения таких эксплуатационных характеристик сплавов системы Al-Fe, как прочность и пластичность [3]. Несмотря на то что имеется большое количество работ по исследованию структуры и свойств быстрозатвердевших (БЗ) сплавов Al-Fe (интерес обусловлен их возможным использованием в качестве высокотемпературных сплавов для аэрокосмической промышленности [4-7]), распределение железа в БЗ-образцах, в том числе изменение послойного элементного состава сплавов Al-Fe при фазовых превращениях, изучено недостаточно.

Поверхность БЗ-фольг сплавов Al–Fe изучалась с применением растровой электронной и атомно-силовой микроскопии. Также было продолжено исследование пространственного распределения железа в фольгах сплавов алюминия [8, 9] с помощью метода резерфордовского обратного рассеяния (РОР) и компьютерных моделирующих программ RUMP [10, 11]. Для определения стабильности сплавов был выполнен рентгеноструктурный анализ фольг в сочетании с измерением удельного электросопротивления и микротвердости образцов после отжига. О предпочтительности измерения электросопротивления при исследовании фазовых превращений в БЗ-сплавах Al–Fe сообщается в [12]. В работе также обсуждается взаимосвязь послойного элементного и фазового составов сплавов Al–Fe.

МЕТОДИКА ЭКСПЕРИМЕНТА

При изготовлении образцов использовался алюминий чистотой 99.99%. Сплавы A1-0.25, 0.3, 0.5, 0.6, 1.0, 1.5 Fe (ат. %) были получены сплавлением смеси компонентов в индукционной вакуумной электропечи типа ИСВ-0.004-ПИ-М1. БЗфольги толщиной 50-70 мкм и шириной 5-10 мм были получены выплескиванием капли расплава на внутреннюю поверхность вращающегося медного цилиндра методом, подробно описанным в [13]. Скорость охлаждения расплава составляла ~10⁶ К/с [14]. Топография поверхности образцов изучалась с помощью растрового электронного микроскопа марки LEO1455VP. Трехмерные (3D)изображения поверхности исследуемых фольг были получены с применением атомно-силового микроскопа (ACM) NT-206. Распределение железа по глубине сплавов было изучено в Йенском

университете им. Ф. Шиллера методом резерфордовского обратного рассеяния (РОР) ионов гелия с энергией 1.4 МэВ и энергетическим разрешением 17 кэВ (геометрия эксперимента: $\theta_1 = 0^\circ$, $\theta_2 = 10^\circ$, $\theta = 170^{\circ}$, где $\theta_1, \theta_2, \theta$ – углы влета, вылета и рассеяния ионов соответственно). Экспериментальные спектры обратного рассеяния обрабатывались с использованием компьютерных моделирующих программ RUMP, что позволяет изучать концентрации элементов в образцах начиная с 0.001 ат. %. Величина выхода импульсов У на спектрах является набором случайных цифр (в зависимости от числа рассеянных частиц, попавших в детектор). Так как в данном случае не идет речь о систематической погрешности, то относительная погрешность определения концентрации железа рассчитывалась как статистическая погрешность и не превышала 6%: $\varepsilon_{\text{Fe}} = (Y_{\text{Fe}})^{1/2}/Y_{\text{Fe}}$ [15, 16], где Y_{Fe} – число импульсов сигнала от железа. Рентгеноструктурный анализ фазового состава сплавов, определение изменения параметра элементарной ячейки фольг в зависимости от температуры отжига образцов выполнялись на дифрактометре ДРОН-3М (медное излучение). Для расчета параметра решетки а фольг изучалась дифракционная линия от алюминия с индексами 400, ошибка в определении а не превышала 0.02% [17]. Микротвердость *H*_µ сплавов измерялась с помощью прибора ПМТ-3 при нагрузке 20 г, погрешность измерения микротвердости составляла не более 5%. Изотермический отжиг проводился при постоянных температурах в течение часа при каждой температуре. При изохронном отжиге образцов опыты выполнялись последовательно через 30-40°С с выдержкой 20 мин при каждой температуре. Для определения отношения удельных электросопротивлений $\rho(T)/\rho_0$ применяли зондовый метод, относительная погрешность определения $\rho(T)/\rho_0$ достигала 1%.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследование морфологии БЗ-сплавов Al-Fe показывает, что на поверхности, контактирующей с подложкой (цилиндр), образуются каверны, в которых наблюдается ячеистая структура – продолговатые или двумерные ячейки и изолированные канавки (рис. 1а). Дополнительно графически выделены некоторые ячейки и канавки, связанные с границами зерен. Поверхность фольг, контактирующая с воздухом, имеет ячеистую структуру (рис. 1б). Размер ячеек фольг сплава Al-0.6 Fe составляет от 0.5 до 2.0 мкм. На поверхности образцов с обеих сторон наблюдаются неровности. Причем рельеф фольг со стороны, контактирующей с подложкой, более ровный, чем с внешней стороны. На рис. 1г также показано трехмерное изображение поверхности сплава Al-0.3 Fe, контактирующей с подложкой.

Измерено распределение железа в приповерхностной области фольг сплава Al–0.3 Fe, контактирующей с подложкой: в тонком (~0.03 мкм) приповерхностном слое фольг имеет место повышенное содержание железа, достигающее 1.35 ат. %. В приповерхностной области (от 0.1 до 0.7 мкм) железо распределено практически равномерно (рис. 2). Средняя концентрация железа составляет 0.33 ат. %.

Изучение микротвердости фольг сплавов Al–Fe при изохронном и изотермическом отжигах свидетельствует о том, что отжиг сплавов при относительно низких температурах (до 110°C) вызывает небольшое увеличение H_{μ} (рис. 3а, б). Повышение температуры изохронного отжига приводит к практически монотонному понижению микротвердости фольг сплавов Al–0.6; 1.0 Fe (рис. 3а). Качественно сравнимое поведение микротвердости наблюдается и при изотермическом отжиге фольг сплавов Al–0.6 Fe (рис. 3б). В этом же интервале температур отжига наблюдается уменьшение удельного электросопротивления $\rho(T)/\rho_0$ (рис. 3в).

Параметр элементарной ячейки a фольг сплава Al–0.5 Fe при нагреве фольг до 100°C остается неизменным и равным 0.4047 нм. Дальнейший изохронный отжиг в области температур от 100 до 250°C приводит к уменьшению параметра элементарной ячейки (рис. 4). Так, после отжига образцов при температуре 200°C a = 0.4044 нм. При отжиге выше 200°C наблюдается увеличение параметра элементарной ячейки. Параметр решетки чистого алюминия равен 0.4049 нм [18].

Анализ рентгенограмм фольг сплава Al-1.5 Fe указывает на то, что отжиг при температуре 230°С в течение 2 ч приводит к распаду пересыщенного твердого раствора на основе алюминия и выделению метастабильной фазы Al₆Fe. Получено совпадение межплоскостных расстояний новой фазы d_0 , определенных по положению дополнительных дифракционных линий, отсутствующих на рентгенограммах исходных фольг, и величин межплоскостных расстояний d_m, рассчитанных для метастабильной фазы Al₆Fe, имеющей ромбическую кристаллическую решетку с параметрами элементарной ячейки a = 0.6492 нм, *b* = 0.7437 нм и *c* = 0.7885 нм [19] (табл. 1). Выделения второй фазы в исходных БЗ-сплавах в области образования метастабильного пересыщенного твердого раствора α-Al (концентрация железа в сплаве до 1.5 ат. %) не обнаружены [20].

Отжиг фольг сплавов Al–1.5 Fe в температурном интервале 300–600°С приводит сначала к уменьшению интенсивности дифракционных линий метастабильной фазы Al₆Fe, а затем к их исчезновению. Одновременно появляются новые дифракционные линии, принадлежащие стабильной фазе Al₃Fe, имеющей моноклинную кристал-

Рис. 1. Микроструктура поверхности фольг сплавов Al–0.6 Fe, контактирующей с подложкой (а) и с воздухом (б). Типичное 3D-изображение поверхности сплава Al–0.3 Fe, контактирующей с подложкой (в). Графически выделены некоторые ячейки и канавки, связанные с границами зерен (а).

лическую решетку с параметрами a = 1.5520 нм, b = 0.8099 нм, c = 1.2501 нм и $\alpha = 107^{\circ}43'$ [19]. В табл. 2 приведены межплоскостные расстояния d_m , рассчитанные для метастабильной фазы Al₆Fe, и межплоскостные расстояния d новой фазы, экспериментально рассчитанные для фольг, отожженных при 500°C в течение 1 ч. Поскольку значения d и d_m совпадают, то можно предположить, что при распаде твердого раствора на основе алюминия при температуре 500°C происходит выделение стабильной фазы Al₃Fe.

Ранее нами было получено, что БЗ-фольги слаболегированных сплавов Al–Fe имеют микрокристаллическую структуру [21]. Средний размер зерен фольг составляет несколько микрон и уменьшается с увеличением концентрации железа в сплавах. Результаты настоящего изучения структуры поверхностей БЗ-сплавов Al–Fe показывают, что в процессе СБЗР сплавов Al–Fe формируется ячеистая структура, подобная структурам, обнаруженным в БЗ-сплавах Al–Zn и Al–V [13, 22, 23]. Исследования с помощью ACM свидетельствуют о неоднородности поверхности фольг вдоль оси Z, составляющей в среднем ~0.01 мкм. По данным работы [24] продольные размеры и распределение воздушных углублений на поверхности фольг сплавов Al–Cu, полученных методом спиннингования из расплава, близким к использу-

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ № 4 2008

Рис. 2. Типичный профиль распределения железа в сплаве Al-0.3 Fe по глубине, полученный моделированием с помощью программы RUMP спектров POP от контактирующей с подложкой поверхности образцов.

емому в настоящей работе методу СБЗР, зависят от материала барабана и его линейной скорости.

Сравнение профилей распределения железа по глубине фольг сплавов Al-0.3 Fe и Al-0.25, 2.0 Fe, полученных в индукционной печи и в кварцевых ампулах [8], позволяет сформулировать закономерности перераспределения легирующего компонента железа в процессе сверхбыстрого затвердевания слаболегированных бинарных алюминиевых сплавов. В тонком приповерхностном слое всех изученных образцов содержание железа превышает эвтектическую концентрацию ~0.8 ат. % [25] в 1.7–2.5 раз и выше экспериментально измеренной в объеме концентрации в 4.5-6.9 раз. Отметим, что обнаруженное нами повышенное содержание железа в тонком приповерхностном слое БЗ-сплавов Al-Fe соответствует данным, полученным для бинарных алюминиевых сплавов, содержащих Cu, Co, Ni, Ge и Sb [26-30]. Установлено, что этот эффект зависит от концентрации легирующего элемента. Как известно, процесс СБЗР приводит к возрастанию концентрации неравновесных вакансий в сплаве [31]. Вакансии способны образовывать подвижные комплексы "атом растворенного элемента-вакансия" и диффундировать на поверхность (которая является для них стоком) вместе с легирующим элементом даже при столь высоких, как при СБЗР, скоростях охлаждения и затвердевания расплава [32-34]. Поэтому, видимо, в тонком приповерхностном слое формируется избыток легирующего элемента именно в результате того, что атомы растворенных элементов перемещаются с вакансиями в направлении поверхности фольг и границ зерен [33]. На основании данных о зеренной структуре БЗ-фольг сплавов алюминия [21] послойный эле-

Рис. 3. Изменение микротвердости H_{μ} фольг сплавов Al–0.6; 1.0 Fe при изохронном отжиге (а) и сплава Al– 0.6 Fe при изотермическом отжиге (б). Температурная зависимость отношения $\rho(T)/\rho_0$ фольг сплавов Al–0.25; 0.6 Fe (в).

ментный анализ БЗ-сплавов методом РОР выполнялся по глубине столбчатого зерна. Распределение компонентов в зерне усреднено по площади сечения пучка диаметром 1 мм, что по оценкам составляет до 10^5 столбчатых зерен. Сравнение с ранее полученными на сплавах Al–Fe результатами POP [8] подтверждает воспроизводимость данных.

Таким образом, можно заключить, что интерпретация результатов послойного элементного анализа, выполненного методом РОР на фольгах сплавов алюминия, соответствует реальной картине. Вопрос о влиянии шероховатости поверхности образца на форму спектров РОР рассматривается в [35, 36]. Установлено, что, во-первых, при падении пучка по нормали к поверхности (геометрия эксперимента в данной работе) влияние шероховатости на форму спектра РОР минимально. Во-вторых, для образцов с неоднородной поверхностью из-за наличия выступов и впадин уменьшается выход частиц в высокоэнергетической области. Как следствие, обнаруженная концентрация атомов в поверхностном слое образца ниже реального значения. Однако данный эффект существен в случае, когда размер пучка сравним с размерами неоднородностей [36]. В литых массивных образцах неоднородное по глубине распределение легирующих элементов в приповерхностном слое в пределах глубинного разрешения методом РОР не наблюдается [37].

Авторами [6, 38] обнаружено, что в пересыщенных твердых растворах Al–Fe, полученных в результате СБЗР, атомы железа распределены в решетке алюминия не статистически. Как сообщается в [39], уже расплавы системы Fe-Al неоднородны и содержат кластеры. Объемное содержание кластеров зависит от концентрации компонентов сплавов. Таким образом, некоторое увеличение микротвердости фольг на начальном этапе изохронного отжига и изотермического отжига при температуре 60°С, по-видимому, можно связать с перераспределением атомов железа в твердом α-растворе, ведущим к дополнительному образованию кластерных группировок, обогащенных атомами железа и способных вызвать упрочнение сплава. В работах [40, 41] установлено, что образование кластеров приводит к увеличению $H_{\rm II}$ на начальном этапе отжига для систем Al–Zn и Al-Mg с большим содержанием цинка и магния. Авторами [42] высказано предположение, что распад пересыщенного твердого раствора в системе Al-Ge начинается с формирования зон Гинье-Престона, упрочняющих сплав. Дальнейший отжиг в интервале температур 100-200°С приводит к уменьшению параметра элементарной ячейки фольг сплава, что связано с распадом зон Гинье-Престона. Частичное разрушение кластерных группировок и увеличение доли статистически распределенных в решетке атомов железа наблюдалось после отжига при 200°С БЗ-сплавов АІ-Fe. Это явление подобно растворению зон Гинье-Престона на стадии предвыделения и приводит к снижению параметра а [43]. Распад пересыщенно-

Рис. 4. Изменение параметра элементарной ячейки *а* фольг сплава Al–0.5 Fe при изохронном отжиге.

го твердого раствора на основе алюминия, сопровождающийся обеднением первичного твердого раствора атомами железа, вызывает уменьшение микротвердости и удельного электросопротивления сплавов. Снижение сопротивления при отжиге указывает на преципитацию атомов легирующего элемента, а также коагуляцию выделений [44-46]. Увеличение параметра элементарной ячейки фольг Al-0.5 ат. % Fe при отжиге выше 200°С также свидетельствует о распаде пересыщенного твердого раствора на основе алюминия. Из кривых изохронного отжига следует, что процесс выделения и коагуляции железосодержащих фаз является доминирующим при температуре отжига до 500°С. Установленные температурные интервалы распада находятся в согласии с результатами [4, 47], где исследовались сплавы Al, содержащие от 5.0 до 20.0 ат. % Fe, полученные спиннингованием расплава.

Тот факт, что отжиг при относительно низких температурах приводит к образованию кластеров атомов железа в твердом α -растворе, может объяснить перераспределение элементов в фольгах сплавов Al–Fe, отожженных при 140°C. Ранее нами была обнаружена тенденция снижения концентрации железа в тонком приповерхностном слое при данной температуре в сплавах с 0.25 и 2.0 ат. % Fe

Таблица 1. Сравнение межплоскостных расстояний d_0 и d_m фазы Al₆Fe

θ, град	<i>d</i> ₀ , 10 ⁻⁴ мкм	<i>d_m</i> , 10 ⁻⁴ мкм	hkl
12.2	3.64	3.64	102
13.0	3.42	3.43	021
21.1	2.14	2.14	222
21.7	2.08	2.08	310
24.9	1.83	1.83	310

Таблица 2. Сравнение межплоскостных расстояний d и d_m фазы Al₃Fe

ө, град	<i>d</i> , 10 ⁻⁴ мкм	d_m , 10 ⁻⁴ мкм	hkl
6.0	7.37	7.376	200
6.65	6.65	6.68	011
7.7	5.75	5.77	111
9.3	4.77	4.78	012
10.4	4.27	4.26	112
11.2	3.97	3.96	003
11.5	3.86	3.83	021
12.6	3.53	3.54	220
15.1	2.96	2.97	004
18.6	2.41	2.41	210
20.9	2.16	2.17	224
23.8	1.91	1.91	333
26.2	1.74	1.75	306
29.8	1.58	1.59	036
31.9	1.46	1.47	336
37.4	1.27	1.28	063

[8]. При повышении температуры отжига до 500°С в сплаве Al-2.0 Fe [8] наблюдалось снижение концентрации железа на поверхности фольг при одновременном увеличении его содержания на глубине. По-видимому, снижение концентрации легирующего элемента вызвано его диффузией в объем образцов. Вероятной причиной перераспределения железа при 500°С является распад метастабильной фазы Al₆Fe и выделение стабильной фазы Al₃Fe. Об эффекте перераспределения элементов в результате отжигов БЗ-сплавов Al-Zn и Al-Ge, а также о тенденциях изменения послойного состава фольг при возрастании температуры отжига до 500°С сообщалось в [22, 23, 48]. Отметим, что в БЗ-сплавах Al-4.0 Zn и Al-5.0 Ge при отжиге обнаружен рост концентрации легирующего элемента в тонком приповерхностном слое при увеличении температуры отжига. Таким образом, диффузия в сплавах Al-Zn, Ge и Al-Fe при отжиге протекает в противоположных направлениях - на поверхность фольги и в ее глубину. При этом характер распределения цинка по глубине в неотожженных фольгах сплавов Al-Zn обеднение тонкого приповерхностного слоя, а также резкое возрастание содержания цинка в 1.7-2.6 раза в слое до 0.2 мкм и последующее практически равномерное распределение цинка по глубине образцов - качественно отличается от закономерностей распределения железа и германия в фольгах сплавов Al-Fe, Ge. Для установления общих закономерностей распределения элементов по глубине фольг сплавов Al и изучения корреляции профилей распределения легирующих элементов и фазового состава сплавов необходимо дальнейшее исследование физических процессов, протекающих при СБЗР алюминиевых сплавов, а также в процессе отжига полученных фольг.

ЗАКЛЮЧЕНИЕ

Выполнен структурный и фазовый анализ фольг слаболегированных сплавов Al-Fe. В результате сверхбыстрой закалки на поверхности фольг, контактирующей с воздухом, формируется ячеистая структура, размер ячеек изменяется от 0.5 до 2.0 мкм. На поверхности, контактирующей с подложкой, образуются каверны, в которых также наблюдается ячеистая структура. Впервые установлена поперечная неоднородность поверхности фольг сплавов Al-Fe, которая составляет ~0.01 мкм. Тонкий приповерхностный слой обогащен железом: в сплаве Al-0.3 Fe концентрация железа в 4.5 раза превышает расчетное значение. Отжиг сплавов Al-Fe на начальном этапе при температуре ~110°С приводит к незначительному увеличению микротвердости, что можно объяснить перераспределением атомов железа в твердом α-растворе, ведущем к образованию их кластеров. В процессе дальнейшего повышения температуры отжига фольг происходит распад пересыщенного твердого раствора на основе алюминия, сопровождающийся сначала выделением метастабильной фазы Al₆Fe и затем выделением стабильной фазы Al₃Fe.

И.И. Ташлыкова-Бушкевич благодарна профессору В. Вешу (университет им. Ф. Шиллера, Иена, Германия) за помощь при проведении экспериментов с использованием метода РОР.

СПИСОК ЛИТЕРАТУРЫ

- Katgerman L., Dom F. // Mater. Sci. and Eng. A. 2004. V. 375–377. P. 1212.
- 2. *Lavernia E.J.*, *Ayers J.D.*, *Srivatson T.S.* // Intern. Mater. Rev. 1992. V. 37. № 1. P. 1.
- Cochrane R.F., Evans P.V., Greer A.L. // Mater. Sci. Eng. A. 1991. V. 133. P. 803.
- Kim D.H., Cantor B. // J. Mater. Sci. 1994. V. 29. P. 2884.
- 5. Анищенко Т.И., Литвин Б.Н., Буров Л.М. // Структура и свойства сплавов Al–Fe, полученных в неравновесных условиях. Днепропетровск: Днепропетр. ун-т, 1990. 10 с.
- 6. Бродова И.Г., Есин В.О., Поленц И.В. и др. // Расплавы. 1990. № 1. С. 16.
- Bizjak M., Kosec L. // Zeitschrift f
 ür Metallkunde / Materials Research and Advanced Techniques. 2000. V. 91. № 2. P. 160.
- Ташлыкова-Бушкевич И.И., Шепелевич В.Г. // ФХОМ. 1999. № 6. С. 73.
- 9. Tashlykova-Bushkevich I.I. // Vacuum. 2005. V. 78. № 2–4. P. 529.
- 10. Комаров Ф.Ф., Кумахов М.А., Ташлыков И.С. Неразрушающий анализ поверхностей твердых тел

74

ионными пучками. Минск: Университетское, 1987. 256 с.

- 11. *Doolittle L.N.* // Nucl. Insrtum. Meth. B. 1985. V. 9. P. 344.
- 12. Bizjak M., Kosec L., Kosec B., Anžel I. // Metalurgija. 2006. V. 45. № 4. P. 281.
- 13. Ташлыкова-Бушкевич И.И., Шепелевич В.Г., Неумержицкая Е.Ю. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2007. № 4. С. 69.
- 14. *Мирошниченко С.И.* Закалка из жидкого состояния. М.: Металлургия, 1982. 168 с.
- 15. Ташлыкова-Бушкевич И.И. Метод резерфордовского обратного рассеяния при анализе состава твердых тел. Минск: БГУИР, 2003. 52 с.
- Сквайрс Дж. Практическая физика. М.: Мир, 1971. 246 с.
- 17. Русаков А.А. Рентгенография металлов. М.: Атомиздат, 1977. 480 с.
- Алюминий: свойства и физическое металловедение: Пер. с англ. / Ред. Хэтч Дж.Е. М.: Металлургия, 1989. 422 с.
- 19. Хансен М., Андерко К. Структуры двойных сплавов: Справочник. Т. 2. М.: Металлургиздат, 1962. 609 с.
- Василевич Е.Ю., Гутько Е.С., Шепелевич В.Г. // Сб. науч. трудов. Теоретические и технологические основы упрочнения и восстановления изделий машиностроения. Полоцк: ПГУ, 2001. С. 162.
- 21. Шепелевич В.Г., Ташлыкова-Бушкевич И.И., Анисович А.Г. // ФХОМ. 1999. № 4. С. 86.
- Ташлыкова-Бушкевич И.И., Гутько Е.С., Шепелевич В.Г. // Перспективные материалы. 2005. № 1. С. 59.
- 23. Tashlykova-Bushkevich I.I., Guť ko E.S., Shepelevich V.G. // Adv. Mater. 2005. V. 12. № 1. P. 54.
- Taha M.A., El-Mahallawy N.A., Abedel-Ghaffar M.F. // J. Mater. Sci. 1992. V. 27. P. 5823.
- 25. Гуляев А.П. Металловедение. М.: Металлургия, 1986. 544 с.
- 26. Tashlykova-Bushkevich I.I., Shepelevich V.G. // J. Alloys and Compounds. 2000. № 299. P. 205.
- 27. Ташлыкова-Бушкевич И.И., Шепелевич В.Г. // ФХОМ. 2000. № 4. С. 99.
- Ташлыкова-Бушкевич И.И. // Сб. докл. 3-й Всерос. научно-техн. конф. "Быстрозакаленные материалы и покрытия". М.: "МАТИ"–РГТУ, 2004. С. 23.

- 29. Ташлыкова-Бушкевич И.И., Куликаускас В.С., Веш В. и др. // ФХОМ. 2004. № 3. С. 75.
- Ташлыкова-Бушкевич И.И., Гутько Е.С., Шепелевич В.Г. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2006. № 4. С. 100.
- 31. Srivatson T.S., Sudarshan T.S., Lavernia E.J. // Progress in Materials Science. 1995. V. 39. P. 317.
- 32. *Pleiter F., Hohenemser C. //* Phys. Rev. B. 1982. V. 25. № 1. P. 106.
- 33. *De Haas M., de Hosson J.Th.M. //* Scripta Mater. 2001. V. 44. P. 281.
- 34. Brokman A. // Acta Metal. Mater. 1987. V. 35. № 2. P. 307.
- 35. Knudson A.R. // Nucl. Instrum. Methods Phys. Res. 1980. V. 168. P. 163.
- Ключников А.А., Пучеров Н.Н., Чеснокова Т.Д., Щербин В.Н. Методы анализа на пучках заряженных частиц. Киев: Наук. думка, 1987. 152 с.
- Shepelevich V., Tashlykova-Bushkevich I. // Mater. Sci. Forum. 1997. V. 248–249. P. 385.
- 38. Фадеева В.И., Леонов А.В., Рясный Г.К., Рейман С.И. // Металлы. 1993. № 2. С. 87.
- Il'inskii A., Slyusarenko S., Slukhovskii O. et al. // Mater. Sci. Eng. A. 2002. V. 325. № 1–2. P. 98.
- Хачатурян А.Г. Теория фазовых превращений и структура твердых растворов. М.: Наука, 1974. 384 с.
- 41. Гинье А. Неоднородные металлические твердые растворы. М.: Изд-во иностр. лит., 1962. 158 с.
- 42. Кузнецова Р.И., Федоренко С.З., Цой Г.М., Жуков Н.Н. // ФММ. 1976. Т. 42. № 1. С. 75.
- Фадеева В.И., Леонов А.А., Рясный Г.К., Сорокин А.А. // Неорган. материалы. 1990. Т. 26. № 8. С. 1662.
- 44. Sayed H.El., Kovăcs I. // Phys. Status Solidi. A. 1974. V. 24. № 1. P. 123.
- 45. *Kovăcs I.* // Crystal Res. Technol. 1984. V. 19. № 10. P. 1331.
- Gaber A., Afify N., Mostafa M.S. // J. Phys. D: Appl. Phys. 1990. V. 23. P. 1119.
- 47. Kim D.H., Cantor B. // Philos. Mag. A. 1994. V. 69. № 1. P. 45.
- Tashlykova-Bushkevich I.I., Kolasik M. // Proc. IV Intern. Conf. "New Electrical and Electronic Technologies and their Industrial Implementation". Zakopane (Poland): Lublin University of Technology, 2005. P. 175.

Structure and Phase Analysis of Rapidly Solidified Al–Fe Alloys I. I. Tashlykova-Bushkevich, E. S. Gut'ko, V. G. Shepelevich, S. M. Baraishuk

Structure and phase composition of lightly doped rapidly solidified Al–Fe alloys were investigated. Foil surface was studied by means of TEM, AFM and RBS-techniques. Change of the alloy phase composition during annealing was examined using X-ray analysis and measurements of electrical resistivity and microhardness. The Al–Fe alloys was found to have microcrystalline structure. Level-by-level element analysis allowed to reveal irregular distribution of Fe in the near-surface region of samples. The correlation between the dope depth profiles and the phase composition of the alloys was observed. It was detected that α -Al solid solution decomposed after annealing at 250–350°C. Metastable Al₆Fe phase formed during annealing at higher temperatures was decomposed after further annealing at 300–500°C, and the stable Al₃Fe phase precipitated.