СЕКЦИЯ 3 ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ ПРОИЗВОДСТВА ПРОДУКЦИИ РАСТЕНИЕВОДСТВА

УДК 631.313.1

ПОДБОР БОРОН ДЛЯ ФЕРМЕРСКОГО ХОЗЯЙСТВА

А.Г. Павлов, канд. с.-х. наук, доцент, В.А. Лутовинов, студент-фермер

ФГБОУ ВО «Тамбовский государственный технический университет», г. Тамбов, Российская Федерация

Аннотация. Рассмотрены аргументы при подборе борон для фермерских хозяйств; проанализированы преимущества и недостатки бороновальных агрегатов разных типов.

Abstract. The arguments for selecting harrows for farms are considered; the advantages and disadvantages of harrowing units of different types are analyzed.

Ключевые слова: зубовые бороны, пружинные бороны, ресурсосбережение.

Keywords: spike-tooth harrow, spring-tooth harrow, resourcesaving.

Введение

Современные фермерские хозяйства, специализирующиеся на производстве продукции растениеводства, нуждаются в оснащении машинами и механизмами, характеризующимися высокой производительностью, надёжность, высокими эксплуатационными показателями и удобством в обслуживании [1-3]. Из всего многообразия машин мы выделили и проанализировали особенности конструкции бороновальных агрегатов, для того, чтобы выявить факторы, определяющие их эффективность и сделать заключение об их применении в условиях фермерского хозяйства.

Основная часть

Бороны традиционно широко используются при закрытии влаги на зяби и на паровых полях, для выравнивания поверхности почвы и дробления комьев, для разрушения почвенной корки и уничтожении сорной растительности при довсходовом и повсходовом бороновании сельскохозяйственных культур, при уходе за лугами и пастбищами, и т.д.

Фермерские хозяйства, как правило, имеют особенности, которые являются определяющими при подборе сельскохозяйственной техники. Прежде всего, это ограниченность людских ресурсов и примитивная база для технического обслуживания и ремонта.

Традиционные зубовые бороны, агрегатируемые на негидрофицированных сцепках, имеют ряд недостатков, среди которых: трудоёмкость агрегатирования; затруднённость переездов агрегатов с поля на поле и невозможность передвижения агрегатов по дорогам общего пользования

вследствие большой ширины захвата агрегатов; невозможность использования борон на полях с большим количеством растительных остатков; налипание почвы при работе на полях с повышенной влажностью и липкостью; необходимость проведения трудоёмких работ по восстановлению изношенных зубьев; непригодность к использованию в почвозащитных технологиях; минимальные возможности регулирования интенсивности воздействия зубьев на почву.

Тем не менее, прицепные зубовые бороны успешно используются в традиционных технологиях, а для нивелирования недостатков применяют некоторые конструктивные решения. Например: гидрофицированные сцепки, на которых секции борон находятся в подвешенном состоянии и переводятся в транспортное и рабочее положение только трактористом. А в сложенном виде, имея небольшую ширину, и могут транспортироваться даже по дорогам с твёрдым покрытием [4].

Для небольших фермерских хозяйств целесообразно использовать складывающиеся рамные конструкции с секциями зубовых борон, агрегатируемых на навеске трактора.

Ведущей тенденцией последнего времени становится использование пружинных зубовых борон [5]. В современных технология в условиях дефицита рабочей силы пружинные бороны постепенно вытесняют традиционные бороны с жесткими зубьями. Пружинные зубовые бороны даже при большой рабочей ширине захвата компактно складываются в транспортное положение и обслуживаются только одним механизатором.

Длинные пружинящие зубья самоочищаются от налипающей почвы и растительных остатков, не требуют обслуживания и ремонта, имеют регулировки давления на почву. Степень воздействия на почву пружинной бороны зависит и от толщины зуба. В связи с этим пружинные бороны могут быть использованы не только для интенсивного рыхления и выравнивания почвы (тяжёлые бороны), но и для борьбы с сорняками даже в посевах пропашных культур (лёгкие бороны). Пружинные бороны эффективно используются в почвозащитных технологиях, для довсходового рыхления почвы, боронования посевов с одновременным внесением удобрений, гербицидов, а также для посева сидеральных культур. Они удачно сочетаются в современных комбинированных почвообрабатывающих агрегатах для крошения и выравнивания почвы.

Заключение

Таким образом, современный земледелец имеет достаточно широкий выбор зубовых борон в зависимости от используемых технологий возделывания сельскохозяйственных культур, объёма выполняемых работ, наличия трудовых и финансовых ресурсов.

Список использованной литературы

1. Завражнов, А.И. Современные проблемы науки и производства в агроинженерии: Учебник / Под ред. А.И. Завражнова — СПб.: Издательство «Лань», 2013.-496 с.

- 2. Федоренко, В.Ф. Повышение ресурсоэнергоэффективности агропромышленного комплекса / В.Ф. Федоренко М.: ФГБНУ «Росинформагротех», 2014.-284 с.
- 3. Попов, А.И. Инвестиционная привлекательность аграрного сектора экономики Тамбовской области / А.И. Попов, А.Г. Павлов // Формирование организационно-экономических условий эффективного функционирования АПК: сборник научных статей Междунар. научн. конференции. Минск, 2018. С.282-286.
- 4. Павлов, А.Г. Перспективы использования зубовых борон.// Актуальные проблемы научно-технического прогресса в АПК : сборник научных статей / под общ. ред. А.Т. Лебедева, Ставрополь: АГРУС Ставропольского государственного аграрного университета, 2015. 386 с.
- 5. Павлов, А.Г. Особенности конструкции и эксплуатации зубовых и пружинных борон в ресурсосберегающих технологиях // Материалы международной научно-практической конференции «Наука и образование XXI века: опыт и перспективы». Часть II Уральск, Западно-Казахстанский аграрно-технический университет имени Жангир хана, 2015.—С. 325—329.

УДК 631.362: 631.348

ВАРИАНТЫ МАГНИТНОЙ СТИМУЛЯЦИИ И ПОКАЗАТЕЛИ РАЗВИТИЯ РАСТЕНИЙ

А.В. Клочков, д-р техн. наук, профессор О.Б. Соломко, канд. с.-х. наук, доцент

УО «Белорусская государственная сельскохозяйственная академия», г. Горки, Республика Беларусь

Аннотация. Приведены результаты исследования различных вариантов действия магнитного поля на рост и урожайность сельскохозяйственных культур.

Abstract. The results of the study of various options for the effect of the magnetic field on the growth and productivity of agricultural crops are presented.

Ключевые слова: магнитная стимуляция, омагничивание воды.

Keywords: magnetic stimulation, water magnetization.

Введение

Накопленные в биологической науке данные убедительно свидетельствуют в пользу применения магнитного поля, стимулирующего биологические процессы. Итоговым выводом по результатам известных исследований [1-5] является заключение о том, что магнитные поля различной интенсивности оказывают значительное влияние на рост и развитие сельскохозяйственных растений.